数学发明

| 环评师 |

【www.guakaob.com--环评师】

数学发明篇一
《一个数学发明家的无限遗憾》

一个数学发明家的无限遗憾

诗云

攻城不怕坚,攻书莫畏难,

科学有险阻,苦战能过关。

青年时代受叶帅《攻关》的影响,我黙黙地下定了决心,尽自己最大的努力为祖国做点什么。由于数学不需要试验材料,没有资金也可进行,因此数学研究成了我的首选。

转眼过了20年,功夫不负有心人,我发明了最大公约数、最小公倍数的计算方法及判别。发明了一元高次多项式有无公共因式的判别及最大公因式的计算。发明了高次方程组快速消元的方法,发明了1+1的极限计数法,论证了1+1定理,论证了恋生素数猜想成立。真正揭示了300多年来费马大定理的迷底。公元2004年又发明了一元高次方程求根公式推导方法,解决了人类千百年悬而未决的问题,指出了伽罗华的错误证明,纠正了阿贝尔定理的错误,同年证明了谷角猜想。

18年来,我五次进京请求中科院数学研究所审稿,可是,没有一个人愿帮这个忙。北大、清华也找过,并多次投稿到期刋社,而他们说超越了发表范围,告诉我去找中科院或到国外去发表。可我是个外语盲呀,哪会注册呢?

通过这么多年的碰壁,我在想这样一个问题,为什么我听到的都是尊重科学尊重知识,为什么看到的却是对科学发明的漠不关心。为什么考中一个清华北大生又是重奖又是标榜,为什么自费攻克天下数学难关,却被人冷落甚至嘲笑,为什么说空话的人得到了重用,实干的人却被埋没。为什么这么大的一个国家,自从老一辈科学家过世后就再没有世界一流科研人才。

国家要发展,离不开科学发明。落后就要挨打。科学技术是第一生产力。邓小平早就作了精辟的论术。现在的情况实在任人担忧。推广科学技术都这样艰难,有理都不知道向哪里说。

事实证明,阿贝尔定理是不成立的,数学界这块净土竟然也有人指鹿为马,把一大批未知预解式充当已知数来证明一个结果,请问法庭上能否找一批什么都不知道的人出庭作证吗?只有伽罗华理论才出这样的杰作。再则方程换元配方后会出现漏解,漏解后的预解式不可能适用牛顿对称性多项式定理了。故所有预解式的系数都是有理数论是错误的估计。这样的错误教材,误导了人类190年之久。也不知道什么时侯可以纠正过来。为什么要等外国人发现这一错误才跟人家争功。为什么中国人不愿走在前面。而是跟在人家后面。

数学发明篇二
《[28] 二进制数学发明权属于中国》

[28] 二进制数学发明权属于中国

——莱布尼茨所谓的二进制发明与中国珠算及周易八卦的关系

张启斌(河北中烟工业公司,张家口 075000)fu.sheng163@tom.com

“二进制”数学由于在近代电子计算机中成功应用而身价倍增。现代意义上的科学技术为什么没有在中国产生,杨振宁先生认为是《周易》所代表的思维方式阻碍了中国近代科学的启蒙。由此二进制数学的“发明归属权”,再次引起人们的关注。2005年初,社科院的李申先生与比利时籍的胡杨、李长铎先生,针对“二进制数学发明归属权”的辩论,几近白热化。双方争论的焦点基本围绕“莱布尼茨发明二进制之前见没见过北宋时期邵雍的先天八卦图”。

英国科学家李约瑟说:“研究用阴爻和阳爻反复交替组成六十四卦‘变易’的占卜者,他们可以被认为是在进行简单的二进制算术运算,但是他们在这样做的时候,肯定是没有认识到这一点的。我们必须要求,任何发明——无论是数学的或是机械的,都应该是有意识地做出来并能供使用的”。 在李约瑟看来,莱布尼茨是“根据先天图发明了二进制”,还是“发明了二进制以后才见到了先天图”,并不是十分重要的事情。故此,我们若想真正地夺回二进制数学的“发明归属权”,我们还必须在中国文化的其它领域,特别是在中国的数算领域找到“有意识地做出来并能供使用”的二进制证据。

中国珠算及筹算,延用的是一种古老的“累值制”数学。我们知道,这种累值制数学,可以用于“二进制~N进制”编码;中国珠算及筹算,是其“二进制”与“五进制”混编技术的十进制编码。

中国算盘上档算珠“以一当五”,其加法口诀为“五上五”、“五去五进一”;其减法口诀为“五去五”、“五退一还五”。就是说,上述四句口诀,实际上是指算盘上档算珠的基本运算“1上1”、“1去1进1”、“1去1”、“1退1还1”。如此来看,中国算盘上档算珠之运算,与二进制典型的“0+1=1”、“1+1=10”、“1—1=0”、“10-1=1”之运算,又有什么差别呢?

——莱布尼茨所谓的二进制发明,即“0+1=1”、“1+1=10”、“1—1=0”、“10-1=1”,仅仅是把中国珠算的二进制技术,即“五上五”、“五去五进一”、“五去五”、“五退一还五”,换了一种“表述方式”罢了。

中国珠算加、减法口诀,共52句。本文引用的4句,为纯二进制运算。除此以外,中国珠算口诀还有12句纯五进制运算。其余36句,为二进制与五进制混编运算。

(全文见

中国筹算及珠算有着悠久的文化背景,它们早在中国西汉时期就随着丝绸之路传到了欧洲。十七世纪六、七十年代,德国数学家莱布尼茨从中国珠算中萃取出“二进制”技术。然而一个奇怪的现象随之发生,莱布尼茨迟迟不去发表他的作品——因为“二进制数学是一种非常落后的数算方法”,他内心有些胆怯吗?我们不得而知。

直到十七世纪末,当莱布尼茨看到“邵雍先天八卦图”的时候,他才觉得二进制数学似乎有了用武之地。于是,莱布尼茨于1703年发表了他的“二进位算术的阐述——关于只用0与1兼论其用处及伏羲所用数字的意义”论文,随后莱布尼茨通过西方传教士向中国易学界大力鼓吹。戏剧性的是,中国学界并不买帐。

莱布尼茨隐瞒“二进制数学是萃取的中国珠算技术”,以及对“邵雍先天八卦图”所采取的暧昧态度,为后世留下了几多迷雾。

好在中国珠算还活着,中国八卦还活着!

1

数学发明篇三
《数学领域中的发明心理学》

数学领域中的发明心理学

姓名:顾意强 班级:动游Q1142

数学有两种品格,其一是工具品格,其二是文化品格。由于数学在应用上的极端广泛性,因而在人类社会发展中,那种挥之不去的短期效益思维模式特别是在实用主义观点日益强化的思潮中,必然会导致数学之工具品格愈来愈受到重视,更会进一步向数学纯粹工具论的观点倾斜。相反的,数学之另一种更为重要的文化品格,却已面临被人淡忘的境况。

《数学领域中的发明心理学》是法国著名数学家雅克·阿达玛的一本名著,是一本数学方法论的经典著作。着重论述了以“无意识思维”为核心的数学发明心理过程,给人以强烈印象。虽然严格地说,无意识问题应是专门的心理学家所关心的事,但他同时牵涉到数学和心理学这两个领域。具有相当深厚的文化理念内涵和价值。他又不仅仅是关于数学方法论的论述,而且还能够让学习数学和研究数学的人们从中认识到关于数学发明的一般性思维规律的论述。

在数学的(乃至一般的)发明创造过程中,往往存在着创造灵感,或称之曰“顿悟”的现象,这种顿悟的出现,既不能简单地归之于机遇,也不能无为地说成是逻辑推理“对中间阶段的跳跃”,而是经历了一种很复杂的,至今尚未被我们完全认识的“无意识思维”过程之后的结果。所谓无意识思维,乃是指思维者本人既没有意识到他的存在,也没有受到意识支配的一种思维过程。

关于发明所需要的条件,已被近几十年最伟大的天才人物所阐明,他的名字为科学界所熟知,而且整个近代数学都在随着他的脉搏跳动,此人就是亨利·庞加莱。庞加莱的例子取自他自己的最了不起的发现中的一个,即他关于富克斯群和富克斯函数理论的研究,在这个理论中闪烁着他的思想光辉。起先,庞加莱对这种函数冥思苦想了整整两个星期,企图证明它的不存在,但这个想法以后被证明是错误的。后来,在一个不眠之夜,并且是一种我们以后要谈到的特定条件下,他构造出了第一类这种函数。就在此时,他又开始地质考察的旅行生活,途中的许多事使他忘掉了自己的数学工作,当他正要去驾车其他地方时,他刚把脚放到马车上的一刹那,一个思想突然闪现在他的脑海,这个思想就是他用以富克斯函数的变换与非欧几何的变换是等价的。在旅行结束后,庞加莱给出了这个思想的学号:11110370

证明。此后他就把注意力转换到与此有关系的一些算术运算问题上去,但没有取得什么成功,并且看起来也不像与他以前的研究工作有什么联系。由于庞加莱对自己的失败感到厌烦,到海边度过了几天,并考虑了一些其他的事情。有一天,当他正在悬崖上散步时,一种新的思想在他的脑海中又和上一次同样地突然闪出来,而且,同样是一种简单而确定的思想,这个思想就是不定三元二次型的算术变换与非欧几何变换是等价的。

这两个结果使庞加莱认为:肯定存在着另外的富克斯群,因此也就还存在着与他在那个不眠之夜所想到的富克斯函数不同的富克斯函数,以前找到的只是一类特殊情况。然而更严重的困难使得他的工作由此陷于停顿。此时如果坚持不懈地致力于这个问题,或许可以得到好的结果。但他当时没有这样做,亦即未能克服面前的困难。直到后来,当庞加莱在军队中服役的日子里,跟上两次一样,这一问题却又出乎意料地获解了。庞加莱为此而补充说:“最令人惊奇的首先是这种‘顿悟’的出现,所说的这种‘顿悟’,乃是在此之前的一段长时间内无意识工作的结果。在我看来,在数学的发明中,这种无意识工作的作用确实是毋庸置疑的。”

面对庞加莱的这种情况呈现在我们面前的解答是:①与前些日子的努力似乎毫无关系,因而难以认为是以前工作的结果;②出现得非常突然,几乎无暇细想。这种突然性和自发性,在若干年之前也曾被当代科学的伟大学者赫姆霍尔兹指出来过,他在1896年的一个重要讲话中就曾说到过这一点。由于赫姆霍尔兹和庞加莱的讲话,这种情况已被认为是任何一类发明所共有的。格拉哈姆·沃尔斯在他的《思维的艺术》一文中,提议将这种现象称为“顿悟”。在顿悟之前一般地有一个酝酿阶段,在此阶段,研究似乎完全中断,问题仿佛被丢弃在了一边。

我们不仅不能否认无意识的存在,而且我们还必须强调指出,如果没有无意识,恐怕我们什么事情都做不成。首先,思想只有当用语言表达出来时,才是最清楚的,然而当我们讲出一句话的时候,下一句话在哪儿?显然这第二句话并不在我们当时的意识范围内,因为此时的意识只有被第一句话所占有;然而此时我们却在思考第二句话的内容,这句话是准备在下一时刻出现在我们的意识中的,如果我们此时不在无意识中思考着句话,那么下一时刻他就不会出现了,但是我们这儿所说的无意识是很表面的,因为他很接近于意识,它可以立即转化为意识。

这种情况就是弗兰西斯·高尔顿的所谓意识“前室”现象。为了表示这种较浅的无意识过程,我们当然可以用以与“无意识”泾渭分明的“下意识”这个词。但是还有另外一个词,这就是“意识的边缘”。对心理学而言,在运用内反省法时,下意识状态是很有用的。事实上,离开了下意识,内部反省是不可能进行的。但是对某种状态,用下意识这个词就不一定确切。这一点沃拉斯等心理学家曾用视野做过比喻:“在我们的视野中有一个很小的圆圈,在这圆圈中,我们看的很最清楚,而在这个圆圈的旁边还是有一个不规则的区域,即视野边缘。在这个区域中,离开视野中心愈远,我们就看得愈模糊。人们往往对视野边缘的存在性不太关心,因为其中任一对象一旦引起我们的关心,我们就会立即把视野中心对准它。由此我们就可明白,为什么我们往往会忽视意识边缘中的事情,因为我们一旦对它有兴趣,它就立即成为我们的全部意识的对象了。但有时,我们也可作些努力,使它仍然处在意识边缘的地位而去观察它。”一般地说,把意识和意识边缘截然区分开是很困难的,但是关于我们目前感兴趣的“发明”这样一件事中,这种区分就稍微容易些。因为在发明过程中,我们把思想高度集中在问题的求解上,只有当问题获解之后,我们才有可能去顾及当时在意识边缘所发生的事情。

现在很多人的问题肯能出现了,问题在于对无意识的理解是否正确,无意识是不是一种特殊的神秘的东西。事实上,真正神秘之处使我们大脑的功能,即我们的大脑为什么能够思考!这种精神过程是怎么回事?人类已有几千年的历史,而我们对这些问题的了解即毫无进展,不管是对这种或那种精神过程,我们至今还是一无所知。至于说无意识和意识究竟哪个更高级,我认为提出这种问题是愚蠢的。当你骑在一匹马上时,你说它比你高级还是低级?当然,马比你强壮,又比你跑得快,但你却能让它做你所要它做的事。同样的,我也不知道氧气和氢气哪个更高级,也不知道左腿和右腿哪个更高级,实际上,它们在行走中是相互合作的,意识和无意识也是这样,一种合作而相互彼此的关系。

大量的例子表明,这种无意识思维过程的存在,而且,一旦承认了无意识思维的存在性,顿悟现在便得到很好的科学解释。无意识思维在发明创造中占有举足轻重的地位,而且这是由发明的本质所决定的。任何领域中的发明,都是思想组合的方式进行的。也即,发明就是将各种“观念原子”(这使庞加莱用以描述各种基本思想元素的一个形象化的比喻)进行千千万万的组合,再从中选出有用

的组合,而这种选择的标准时所谓“科学的美感”。在发明过程的组合与选择这样两大步骤中,由于无意识思维不受理智之条条框框的约束,而仅仅服从于人的直觉中之和谐的美感,因而比有意识的思维过程更为深刻和奏效。然而我们并不能如下所述那样去理解上面的说法,即由此而认为当你面对一个问题时,你可以什么也不要干,而只要抱有求解此问题的愿望,然后就可以去睡觉了,等到明天早晨醒来时,答案就会突然出现在你面前。显然这是一种荒唐可笑的误解。

事实上,情况完全不是这样,任何问题,只有经过了深思熟虑以后,认识才会产生飞跃。例如,我们在开头所提到的,庞加莱把脚放在马车他班上时所发生的事情,就是在此之前经过了深思熟虑以后所产生的飞跃。牛顿关于万有引力的发现也是一个典型的例子。他曾经被问到,他是如何发现这个定律的。他回答说:“我就是不断地想,想,想。”这件事也许是轶事,但是始终如一的努力,一定是发现这个定律的必要条件。他有一个信念,即任何东西(不论是不是苹果)既然都掉向地球,那么月亮也一定是这样掉向地球,正是这种自觉的信念和顽强的努力,才使他发现了万有引力定律。如果不是经过一定时间的有意识的艰苦努力,尽管这些努力没有产生结果,完全是一种盲目的摸索,那么突然的灵感是不会产生的,可是这些努力并不是白费的。实际上,正是通过这些努力才使得无意识机器能以开动起来,亦即如果没有这些艰苦努力,无意识机器是不会开动起来的,从而什么灵感也不会出现,那么牛顿也只是看着苹果掉下来,只是有幸捡到了一个苹果,而发现不了万有引力定律。

伴随着灵感而出现的绝对的感觉一般是正确的,但是也可能欺骗我们。究竟是对是错,还要由我们称之为“理由”的东西来确定,或者说,还要去证明它们。当然这一证明过程是有意识的。庞加莱说过,无意识不可能做相当长的运算。如果我们以为无意识具有这种能力,具有自动运算的性质,那我们就可以在睡觉之前考虑一个代数运算的问题,而到第二天早晨醒来时就得到结果了,显然永远不会有这种事发生。实际上,对于无意识的自动性质是不能这样来理解的。正确的运算必须注意力高度集中,并且具有顽强的意志和符合规则,因而完全是自觉的和有意识的工作。这种工作是在灵感产生以后的又一个有意识阶段。如此,我们这里似乎遇到了一种自相矛盾的结论,当然我将对此做些说明,如同我对牛顿的情况所作的说明那样。所说的自相矛盾,就是一方面我们看到了作为我们灵魂的

最高本能之一,我们的愿望,我们的意识在整个发明中占据相当重要的地位,他是支配着无意识的;但在这里,他似乎是从属于无意识的,因为他是在无意识以后产生的。但实际上,这两个阶段不仅很难分开,而且是相辅相成的,也就是说,它们是一件事情的两个方面。

至此,我以根据阿达玛在数学发明工作中的体会,以及对我所了解的无意识思维有关问题就此结束。总之,我们所观察到的在发明过程中所出现的无意识的种种情况,都将在数学之文化品格和心理学中放射光芒。

数学乃是一切科学的基础、工具和精髓,因为数学的内容和方法不仅要渗透到其他任何一个学科中去,而且要是真的没有了数学,则就无法想象其他任何学科的存在和发展了。尤其是我们谈到的数学之文化品格之无意识思维,会让我们更好地学习数学,了解数学,体会数学的本意,并实际的运用在我们日常生活之中,服务我们,方便我们。书中说到过的:对于那些当年接受过立足于数学之文化品格数学训练的学生来说,当他们后来真正成为哲学大师、著名律师或运筹帷幄的将帅时,可能早已把学生时代所学到的那些非实用性的数学知识忘得一干二净了。但那种铭刻于头脑中的数学精神和数学文化理念,却会长期的在他们的事业中发挥着重要作用。也就是说,他们当年所受到的数学训练,一只会在他们的生存方式和思维方式中潜在地起着根本性的作用,并且受用终身。

数学发明篇四
《数学的起源》

数学大世界

数学史话

数学的起源

相传,在非常遥远的古代,有一天,从黄河中忽然跳出一匹“龙马”,马背上驮着一幅图,图上画着许多神秘的数学符号;后来,从奔腾的洛水中又爬出一只“神龟”来,龟背上驮着一卷书,书中写的是数的排列方法。

出现了“河图洛书”之后,数学也就诞生了。

小朋友,这个神奇的传说有趣吗?不过,它只是个传说而已。

那么,数学是怎样产生的呢?远古时代人类以打猎、采野果为生。在狩猎中,他们发现只有人比兽多,才有可能对付那些猛兽;采果时,他们发现只有当野果堆得老高时,才有可能帮助他们度过漫长的冬天,这样的实践中,他们才逐步领悟了“多”与“少”的概念。

分配食物时,由于人们通常用一只手拿一件物品,这样就把“一”从“多”的概念中分离出来。有了“一”,人们又逐渐形成了“二”的概念,这可能是因为人的双手各拿一件物品吧!那怎样表示“三”呢?人们并没有三只手呀!后来人们用“巧妙”的办法:把第三件物品放在自己的脚边,这样问题不就解决了!

从一些出土的原始社会的文物中也可以看到一些与数目有关的内容,如陶器上有两只耳朵,三只脚等。

形成“一”、“二”、“三”这些数的概念经历了很长的时间。但那时人类还没有表示数的名称,他们表示数时,是靠手势和相应的身体动作。小朋友,你看这多不方便呀!

怎样解决这个问题呢?请看看下节“最美妙的数学发明”。

最美妙的数学发明

远古的人类用手建立了“一”、“二”、“三”等数的概念。但是因为要用手去干别的活,不能老拿着物品记数呀,于是人们就变着法用别的物体来代替要记的事物,

绳结呀,石子呀,都成了他们记数的工具。例如,打了两只羊,结两个绳结;采两堆野果摆两个小石子,等等。在他们打绳结,摆石子的时候,数学就发生了第一次抽象!可以说这是最美妙的数学发明。

随着生产的发展,人们感觉到摆石子,打绳结太麻烦,就去寻找更方便的方法来记数。后来人们用刻画符号来代替结绳,如在青海发现的带有刻口的骨片。我国的少数民族和汉族一样,在没有文字以前也都是采用结绳和刻划记数法。(云南澜沧拉枯族自治县的拉祜族人,直到1957年还用木刻记载家禽家畜的帐目呢!)这样就产生了最初的文字,产生了最初的数学符号。

随着生产的发展,人们创造出了愈来愈多的产品,因而需要发明更多的数字符号来记录。我国古时候的人在龟甲和兽骨上刻字,后人把它叫做甲骨文。

小朋友,从朦胧的“多”和“少”的概念到最初的数学符号,可不是神灵展示的奇迹,而是原始人类极其艰辛的创造性劳动的产物。为了获得这些原始的数学的概念,人类至少经历了数万年的漫长岁月!

记数法是最美妙的数学发明,下节要讲的“十进位值制记数法和筹算”更是锦上添花!

十进位值制记数法和簿算

我国是世界上最早发明“十进位值制记数法”的国家。“位值制”是千百年来人类智慧的结晶,它使人们能用少数简单的记号代替复杂难记的符号,能用少数的记号表示全部的数,为进一步研究事物的数量关系创造了有利的条件。“十进位值制”更是精彩!它有两个特点:①十进制。即“逢十进一”,也就是说十个一记成十,十个十记成百等;②位值制,即一个数码表示什么数要由它所处的位置来决定。比如487,4在百位上,表示有4个百,8在十位上表示有8个十。

“十进位值制记数法”是当时世界上最先进的!

人类在长期的生产实践中发明了数字,发明了十进位值制记数系统,随之而来的必然有计算方法的发展。世界上最早的计算方法——筹算,也是我国古代人们发明的。中国人用算筹来记数,十进位值制就更加明确了。“筹”是一种小棍或其它材料制成的小棍,在没有发明纸张和珠算之前,它是我国古代的计算工具。

用算筹记数有纵横两种摆法:

记数时,顺序是从右到左,一纵一横,由小到大,遇有零数空着不放筹。如,423705,可以摆成如下样式:空格的地方表示零。我国古书上缺字都用“□”表示,数字间的空位,后来就用“□”表示了,在行书书写时,方块很容易划成圆圈,自然零号就记作“○”了。但中国○号的记法同阿拉伯数码的扁圆“0”是不同的。

算筹这些普通的小竹棍,在我们祖先手中像“魔棍”一样展示了我国具有独特风格的古代数学体系,同时也对我国古代数学的迅速发展产生了巨大而深远的影响。

小朋友,你不为我国古代数学的发展以及数学家的聪明才智感到由衷的骄傲吗? 分数的产生和分数运算

小朋友,一个物体的一半如何表示?你肯定要用分数!可是你知道分数在我国是什么时候开始使用的吗?当时是怎样进行分数运算的呢?

至迟在春秋战国时代我国就已有了分数的概念。春秋战国时期,社会上思想活跃,生产范围有所扩大,技术水平也有所提高,实践中提出了许多新的数学问题。比如,一个物体的一半如何表示呢?这当然不能用自然数,这就要求创造新数来表示了。

在《墨子》书中记载的分数大都是由于分配而引起的。小半(表示 ),大半(表示 ),半(表示 )是当时的分数专用名词。《管子》在讲土地种植的分配时又提出“十分之二”、“十分之四”、“十分之五”、“十分之六”、“十分之七”等分数。

今天,小学四年级的学生已经会做分数四则运算,但古代人们对分数运算很感头痛,尤其是欧洲人。那时,欧洲一个最有学问的人说:“世界上有很多难做的事情,但是没有比算术四则再难的了。”由于我国古代灵活地运用算筹,避免了许多麻烦!

我国古代是这样表示分数的,如237,被除数在除数的上面,最上面留着放商数。如下左图:

除得的商数是3,余数是2,表示方法见上右图。后来,我国的分数表示法传到印度,又传到阿拉伯国家。

我国古代著名的《九章算术》一书中,分数已有完整的四则运算法则以及约分法则。这些法则在世界上是最早的而且和现在所用的几乎完全一样,这是我们可引以为自豪的。

“规矩”的传说和墨家几何学

我国勤劳智慧的祖先,真不愧是创造发明的能手。在计算技术方面他们发明了算筹;在几何学应用方面,他们也发明了构造简单而功效卓著的工具“规”与“矩”,从理论上研究了几何学。

“规”就是画圆的圆规,“矩”就是折成直角的曲尺。关于规矩的发明,古代流传着好几种不同的传说。

有一种传说是,认为规矩是春秋战国时期著名的工匠鲁班发明的。

还有一种传说是,规矩在比鲁班早一二千年的时候就已经发明出来了。大禹治水的时候,还用规矩作过测量工具哩!

传说归传说。战国时期,规与矩已成为民间很普通的工具,这是公认的。“规”、“矩”的应用是我国古代几何学的雏形,战国时期墨家学派对几何学理论的研究,开辟了东方形式逻辑的新纪元。

墨家学派的代表人物——墨翟,大约生活在公元前468~376年,他出身贫苦,曾当过制作器具的工匠,生活俭朴,但他胸怀大志,以“兴天下之利,除天下之害”为己任,并从生产实践中总结积累各种知识,如:光学、力学、逻辑学、几何学等,著有《墨经》一书,创建了墨家学派。《墨经》里的几何学知识被誉为世界上最古老的几何学。

墨家几何学问题学说,共19条,言简意赅,构成了一个相当丰富和严谨的理论体系。可与一个世纪后大家熟悉的欧几里得几何学相媲美。

两千多年前《墨经》里的几何概念和我们今天所学的基本相同。比如关于圆和平行线的定义,《墨经》里是这样说的:

“圆,一中同长也。”即是说,圆是有一个中心,中心到周界的距离处处相等的图形。

“平,同高也。”“平”就是平行线,平行线是同高的,相互间的距离处处相等。 墨家学派的科学成就是辉煌的,同时他们把知识用于实践及刻苦治学的精神也是我们学习的好榜样。

商 高

商高是我国古代周朝著名的数学家,是勾股定理的创始人。至于他的生卒年月无

从考查。商高的数学成就主要是勾股定理与测量术。上期讲到的《墨经》是中国古代对几何学理论研究的经典,而商高对几何命题(勾股定理)的证明却是独树一帜的。

勾股定理是一条很古老的定理,几乎所有的数学古国,像埃及、巴比伦、希腊、印度都是很早就知道它了,小朋友,你们到初中后就能学到了。现在接触一点这方面的知识,有利于以后的学习。西方通常称勾股定理为毕达哥拉斯定理,那是因为他们把这个定理的最早发现,归功于毕达哥拉斯。是不是他最早发现这个定理的呢?其实很难肯定。我国古代有部《周髀算经》,内容十分丰富,着重讲述了数学在天文学方面的应用。据这部著作记载,大约在公元前11世纪商高就有了关于勾股定理的知识,如是这样,就要比毕达哥拉斯早500年!

勾股定理的证明方法有500余种。其中商高的证明方法十分简捷。证明的基本思想是把复杂的平面几何问题,归结为研究平面图形的面积,然后通过对面积的代数运算而完成对几何问题的证明,是一种几何代数化的思想,这种思想方法很值得我们学习。

商高的另一成就是测量术,他首开了我国古代测量理论的先河。

准绳,是铅垂和水平方向的测量工具。绳下系一重物,受地心吸引,绳竖直下垂。使矩的一边与铅垂线吻合,另一边正好是水平方向。这样可以测量一条线是否是直线。

利用矩(就是折成直角的曲尺),可以测高、深等。

注:勾股定理的内容是直角三角形ABC的边长满足如下关系:

AC2+BC2=AB2(例如:勾为3厘米,股为4厘米,那么弦一定是5厘米,满足32+42=52)

田忌赛马的故事

现代有一门正迅速发展的数学分支——运筹学。而朴素的运筹学思想很早就产生了。田忌赛马的故事就是春秋战国时期运用筹划,特别是对策论思想的典型事例。充分反映了我们祖先的聪明才智。

“对策”是策略性的竞赛活动。运筹学是研究采用什么样的科学方法去寻求最优的策略使自己获得效益最大,损失最小的一门科学。我国古代虽然没有能够用明显的数量关系来进行描述,但有较为广泛的应用。“田忌赛马”的故事就是最成功的范例。

数学发明篇五
《对数的发明》

对数的发明

对数的概念:logarithms

如果b^n=x,则记n=log(b)(x)。其中,b叫做“底数”,x叫做“真数”,n叫做“以b为底的x的对数”。

log(b)(x)函数中x的定义域是x>0,零和负数没有对数;b的定义域是b>0且b≠1

对数的历史:

对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明

了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:

0、1、2、3、4、5、6、7 、8 、9 、10 、11 、12 、13 、14 、„„

1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、„„

这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国著名的数学家、天文学家拉普拉斯(PierreSimonLaplace,

1749-1827)曾说对数可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

对数的性质及推导

用^表示乘方,用log(a)(b)表示以a为底,b的对数

*表示乘号,/表示除号

定义式:

若a^n=b(a>0且a≠1)

则n=log(a)(b)

基本性质:

1.a^(log(a)(b))=b

2.log(a)(MN)=log(a)(M)+log(a)(N);

3.log(a)(M/N)=log(a)(M)-log(a)(N);

4.log(a)(M^n)=nlog(a)(M)

推导

1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.

MN=M*N

由基本性质1(换掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]

由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(MN) = log(a)(M) + log(a)(N)

3.与2类似处理

MN=M/N

由基本性质1(换掉M和N)

a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]

由指数的性质

a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M/N) = log(a)(M) - log(a)(N)

4.与2类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式

log(a)(N)=log(b)(N) / log(b)(a)

推导如下

N = a^[log(a)(N)]

a = b^[log(b)(a)]

综合两式可得

N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]

所以

b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

所以

log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}

所以log(a)(N)=log(b)(N) / log(b)(a)

性质二:(不知道什么名字)

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下

由换底公式[lnx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(a^n) / ln(b^n)

由基本性质4可得

log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}

再由换底公式

log(a^n)(b^m)=m/n*[log(a)(b)]

--------------------------------------------(性质及推导 完 )

公式三:

log(a)(b)=1/log(b)(a)

证明如下:

由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1

=1/log(b)(a)

还可变形得:

log(a)(b)*log(b)(a)=1

数学发明篇六
《发现数学之美》

发现数学之美

生活中并不缺少美,只是缺少了发现美的眼睛而已。大多数人都会觉得艺术才算美,而科学恰恰相反。科学作为一种求真活动其中不仅蕴涵了认知之维与臻善之维,而且也蕴涵了审美之维。科学的审美之维所关涉的科学美,作为一种理性美亦是一种真善美的结合。

对于我们专业,或许人们或觉得很枯燥,但是对于搞研究的人们而言,数学美感和审美能力是进行一切数学研究和创造的基础。数学追求的目标是,从混沌中找出秩序,使经验升华为规律,将复杂还原为基本。所有的这些都是美的标志。数学家罗素也认为:“数学不但拥有真理,而且也具有至高的美”。

一、和谐美

数学,首先是一个和谐统一的整体。和谐性的主要表现形式是统一、有序、无矛盾以及对称、对偶和平衡等等。

无论是观点的论述,还是定理的证明,首先要求的是所陈述的内容是正确的,是符合科学的。其次,要求逻辑推理的严密。数学的统一表现为各种观点的相互印证、各种结构的相互协调、各种方法的相互融合,各门课程的相互渗透。一篇文章,如果是一气呵成,成为一个统一的整体,就给读者一种美的享受。而对称、对偶在数学中的例子,真是无穷无尽。正三角形、正方形以及正多边形,无一不是对称图形。城市中的标志性建筑物,大部分都是对称的建筑物,如上海的东方明珠塔,巴黎的埃菲尔铁塔。埃及的金字塔,尽管只是简单的三角形形状,它的轮廓只是几条线段,但都给人一种庄重的感觉。站在北京的天安门广场眺望天安门城楼,无不为中国古代建筑师的杰作而叹为观止,这其中就包含了对称性和各部分建筑的合适的比例。自然界中对称性也比比皆是:美丽的蝴蝶、绚丽的花朵、晶莹的雪花„„,无一不是大自然的杰作。

然而黄金分割数把和谐之美体现得淋漓尽致。古希腊的毕达哥斯学派,首先从数的比例中求出美的形式,这就是黄金比0.618。黄金比从它产生之时起,就作为公认的一条美学规律,无数艺术家的艺术作品,都是根据这个比例或接近这个比例而创作出来的。这些艺术品都给人一种和谐美的感觉。直到当代,数学大师华罗庚把它应用于最优化理论中,在优选法中,创造了应用很广的0.618法。

二、对称美

对称指的是谐调的比例构成为1:1。然对称作为谐调的特例,给人以平衡感,称为美的样式,就是对称美。对称美不仅是指几何图形的对称,也包括各种数学概念和理论之间的对称。数学中的对称美是数学对自然本质的一种反映。

几何图形的对称图形是典型的视觉对称美。平面或空间图形的中心对称(即点反射)、平面图形的对称轴、空间图形的平面对称都是这种图形。而既是中心对称,而且所有过对称中心的直线都是对称轴的平面图形是圆,既是中心对称而且所有过对称中心的平面都是对称平面的立体图形都是球。毕达哥拉斯学派认为:“一切立体图形中最美的是球形,一切最美的平面图形中最美的是圆形。”这就是球与圆达到了全对称的缘故。代数中,数的加法与乘法通过运算律而形成对称: a+b=b+a,ab=ba,(a+b)+c=a+(b+c),(ab)c=a(bc);性质符号与运算符号的对称: a-b=a+(-b) ;a÷b=a×1/b。然而,我觉得二项式定理的展开式呈现的也是一种

n0n01n-112n-2kn-k22n-21100n对称: (a+b)=Cnab+Cna b+Cna b2+„+Cna bk+„+Cnab+Cnabn-1+Cnab展开式

的系数当n=1,2,3,„,n,„时图形是对称的,像杨辉三角形。

三、简单美

数学在生活中的应用挺多的,为了更清楚地说明对于简单美的追求所导致的“真正的进步”,以二进位数制的建立为例来进行分析。二进位制渊源已久。作为一种系统的研究,莱布尼兹最早认为建立这样一种数制的可能性。他认为在二进位数制中,只需使用0和1这样两个数字就可表示出所有数量。他指出,1表示统一,0表示无。他推论道,只用0和1就可以把所有的数字都表现出来。这种记数法对于电子计算机是特别适用的。因为,在计算机中可以很方便地用一个特别按钮的“开”和“关”来分别对应数字“1”和“0”,进而,又只需适当增加按钮的数量,我们就可用按钮的组合来表示任何一个二进制数。

四、深刻丰富的内在美

新的课程标准指出数学作为一种普遍适用的技术,有助于人们收集、整理描述信息、建立模型,进而解决问题,直接为社会创造价值。数学不仅帮助人们更好地探求客观世界的规律,同时为人们交流信息提供了一种有效、简捷的手段。数学是人们在对客观世界定性把握和刻画的基础上,逐步抽象概括,形成方法和理论,并进行应用的过程,这一过程充满着探索与创造、观察、实验、模拟、猜测和调控等等,如今已经成为人们发展数学、应用数学的重要策略。正是由于有上述特点,构成了数学中的这种内在美。数学中的这种美,不是以色彩、线条、旋律等形象语言表现出来,而是把自然规律抽象成一些概念、法则或公式,并通过演绎而构成一幅现实世界与理想空间的完美图像。如在分数运算中,由于倒数的建立,除法可以转化为乘法、乘法可以转化为除法,乘和除这一对矛盾于是达到了辩证和统一,充分体现了数学的内在美。数学中的内在美在于它的本身,更重要的是它表现了人在数学创造活动中所显示的智慧、意志和才能。当我们看到学生在数学学习中矢志不移地追求,这不正是数学美的力量的真实写照吗?

数学的美,处处可见:

柏拉图作为古希腊唯心主义哲学的主要代表人物,他认为数学的美是一种纯抽象的美,尽管他的理念世界是抽象的世界,但他却第一次提出了理念世界是“真善美的统一”的见解。

17世纪,笛卡儿所创立的解析几何是数学史上极其杰出的成果,它使几何与代数得到完美的统一,充分揭示了数学的协调美和统一美。

18世纪,该世纪著名数学家欧拉的数学美思想在其《无穷小分析引论》中得到生动的体现,这是一部极其优美的数学专著。

19世纪,有人称19世纪的数学是“革命的数学”,数学美学思想在这一时期也极为活跃,拉普拉斯、高斯、哈密尔顿、黎曼等人在这方面都作出了贡献。

20世纪,数学家们开始自觉地运用数学美学方法,总结数学审美标准,探讨数学发明中的审定心理,其突出代表人物是19世纪末及20世纪初的庞加莱及被誉为“超人的天才”的冯·诺伊曼,还有研究数学领域中的发明心理学的法国著名数学家雅克·阿达玛。

陈景润是国际知名的大数学家,深受人们的敬重。他对数学的执着不是用支言片语能说清的。为证明“哥德巴赫猜想”( “哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。)摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”。 作家徐迟在《哥德巴赫猜想》中这样描绘陈景润的内心世界:“我知道我的病早已严重起来。我是病入膏肓了。细菌在吞噬我的肺腑内脏。我的心力已到了衰竭的

地步。我的身体确实是支持不了啦!唯独我的脑细胞是异常的活跃,所以我的工作停不下来。我不能停止。„„”

当然对数学做出贡献的人非常的多,他们对数学的执着,又何尝不是数学的另一种美呢?古希腊数学家普洛克拉斯指出:“哪里有数,那里就有美。”因此,我们应该仔细体会数学,那样它的美才会体现。当然世间万物亦如此!“生活中并不缺少美,只是缺少发现美的眼睛。

数学发明篇七
《中国数学》

数学发明篇八
《数学的来历》

罗素悖论

2003-9-12 古今数学家

一天,萨维尔村理发师挂出一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。 因为,如果他给自己理发,那么他就属于自己给自己理发的那类人。但是,招牌上说明他不给这类人理发,因此他不能自己理。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理。由此可见,不管怎样的推论,理发师所说的话总是自相矛盾的。

这是一个著名的悖论,称为“罗素悖论”。这是由英国哲学家罗素提出来的,他把关于集合论的一个著名悖论用故事通俗地表述出来。

1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为它们的基础。到19世纪末,全部数学几乎都建立在集合论的基础之上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年罗素提出的理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。 此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的革命。

向量

2003-6-23 古今数学家

向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚力士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿. 课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型.

从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.

向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.

但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家

汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析. 三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪SO年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.

梅森素数

2003-6-19 古今数学家

梅森素数是数论中非常重要的一类素数,它在纯数学、不可破译的编码和加密解密领域都有应用。

GIMPS是一个互联网上的分布式计算系统,专门用来寻找梅森素数。GIMPS的设计者之一乔治。沃特曼说:“除了已发现的以外还存在许多这样的素数,任何人只要拥有一台能够上网的计算机,就可以加入GIMPS”.他们在共同使用一个软件来寻找梅森素数,. 1999年6月1日发现了第三十八个梅森素数,,它等于2的6972593次方再减去1, 这个数有2098960位,是由美国的Nayan Hajratwala(纳扬)用了111天才找到的.他赢得了EFF公司为此而设立的5万美元的奖金,此奖是为第一个发现一百万位以上的素数设立的,如果谁第一个发现了一千万位以上的素数,将赢得10万美元的奖金.

第39个梅森素数是: 2的13,466,917次方减1,它有 4,053,946位十进制数字。 这个新的梅森素数是由一位20岁的加拿大青年麦克尔.卡梅隆(Michael Cameron)用一台雷鸟 800MHz的PC机花了45天时间发现的。他是Great Internet Mersenne Prime Search (Gimps)。参加者之一。现在已经有十三万人参加其中。

有理数

2003-6-19 古今数学家

古埃及人约于公元前17世纪已使用分数,中国《九童算术》中也载有分数的各种运算。分数的使用是由于除法运算的需要。除法运算可以看作求解方程px=q(p≠0),如果p,q是整数,则方程不一定有整数解。为了使它恒有解,就必须把整数系扩大成为有理系。

关于有理数系的严格理论,可用如下方法建立。在Z×(Z -{0})即整数有序对(但第二元不等于零)的集上定义的如下等价关系:设 p1,p2 Z,q1,q2 Z - {0},如果p1q2=p2q1。则称(p1,q2)~(p2,q1)。Z×(Z -{0})关于这个等价关系的等价类,称为有理数。(p,q)所在的有理数,记为 。一切有理数所成之集记为Q。令整数p对应一于 ,即(p,1)所在的等价类,就把整数集嵌入到有理数的集中。因此,有理数系可说是由整数系扩大后的数系。

整数

2003-6-19 古今数学家

在自然数集N之外,再引入新的元素0,-1,-2,-3,…,-n,…。称N中的元素为正整数,称0为零,称1,-2,-3,…,-n,…。为负整数。正整数、零与负整数构成整数系。

零不仅表示"无"它在命数法中还个有特殊的意义:表示空位的符号。中国古代用算筹计数并进行运算,空位不放算筹,虽无空位记号,但仍能为位值记数与四则运算创造良好条件。印度--阿拉伯命数法中的零来自印度的零(sunya)字,其原意也是"空"或"空白"。

中国最早引入了负数。《九童算术·方程》中论述的"正负术",就是整法的加减法。减法运算可看作求解方程a+x=b,如果 a,b是自然数,则方程未必有自然数解。为了使它恒有解,就有必要把自然数系扩大为整数系。

关于整数系的严格理论,可用下述方法建立。在N×N(即自然数有序对的集)上定义如下的等价关系:对于自然有序对(a1,b1),(a2,b2),如果a1+b2= a2+b1,就说(a1,b1)~(a2,b2),N×N,关于上述等价关系的等价类,称为整数。一切整数的集记为Z。

自然数

2003-6-19 古今数学家

建立自然数概念通常有基于基数与基于序数两种方法。

基于基数的自然数概念可溯源于原始人类用匹配方法计数。古希腊人用小石卵记畜群的头数或部落的人数。现在使用的英语calculate(计算)一词是从希腊文calculus(石卵)演变来的。中国古代《易·系辞》中说,上古结绳而治,后世圣人易之以书契,这都是匹配计算法的反映。

集合的基数具有元素"个数"的意义,当集合是有限集时,该集合的基数就是自然数。由此可通过集合的并、交运算定义自然数的加法与乘法(见算术)

为了计数,必须有某种数制,即建立一个依次排列的标准集合。随后对某一有限集合计数。就是将该集合中每个元素顺次与标准集合中的项对应,所对应的最后的项,就标志着给定集合元素的个数。这种想法导致G.皮亚诺1889年建立了自然数的序数理论。 皮亚诺规定自然数集满足下列五条公理,这里"集合"、"含有"、"自然数"、"后粥"等是不加定义的。

① 是自然数。

② 不是任何其它自然数的后继。

③ 每个自然数都有一个后继(a的后记为)

④ a/=b/蕴含a=b

⑤ 设S是自然数的一个集合。如果S含有1,且S含有a / 蕴含S含有 ,则S含有任何自然数。

公理⑤就是熟知的数学归纳法公理。一切自然数集记为{1, 2 , 3 ,…,n …},简记为N。 从上述公理出发,可以定义加法和乘法,它们满足交换律与结合律,加法与乘法满足分配律。

对数

2003-6-18 古今数学家

对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。

在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。

当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。

那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:

0、1、2、3、4 、5 、6 、7 、8 、9 、10 、11 、12 、13 、14 、…… 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、…… 这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。

比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。

纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?

经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。

所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国著名的数学家、天文学家拉普拉斯(Pierre Simon Laplace,1749-1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

概率论

2003-6-12 古今数学家

概率论产生于十七世纪,本来是又保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。

早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m局就算赢,全部赌本就归谁。但是当其中一个人赢了 a (a<m)局的时候,赌博中止。问:赌本应该如何分法才合理?”后者曾在1642年发明了世界上第一台机械加法计算机。

三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。

近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。

概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。但是应该指出,概率论、数理统计、统计方法又都各有它们自己所包含的不同内容。

费马大定理

2003-6-7 古今数学家

300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的正整数,则不定方程xn+yn=z没有非零整数解”。

费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最著名的定理—费马大定理。 费马(1601年~1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。

费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进展更快。1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立。1983年一位年轻的德国数学家法尔廷斯证明了不定方程xn+yn=z只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一费尔兹奖。1993年英国数学家威尔斯宣布证明了费马大定理,但随后发现了证明中的一个漏洞并作了修正。

虽然威尔斯证明费马大定理还没有得到数学界的一致公认,但大多数数学家认为他证明的思路是正确的。毫无疑问,这使人们看到了希望。

四色问题

2003-6-7 古今数学家

英国人格思里于1852年提出四色问题(four colour problem,亦称四色猜想),即在为一平面或一球面的地图着色时,假定每一个国家在地图上是一个连通域,并且有相邻边界线的两个国家必须用不同的颜色,问是否只要四种颜色就可完成着色。

1878年英国数学家凯莱重新提出这问题,引起人们关注。次年,英国数学家肯普提出用可约构形证明四色问题,虽然他的证明过程有漏洞,但为该问题的解决指出方向。1890年英国人希伍德沿着这方向证明了任何地图只用五种颜色着色便够了,取得初步进展。1913年美国数学家伯克霍夫发现一些新的可约构形。 1968年挪威数学家奥雷等人证明了用四种颜色一定可以把不超过四十个国家的地图着色,推进了四色问题的研究。

数学发明篇九
《数学发现与发明小报》

本文来源:http://www.guakaob.com/jianzhugongchengkaoshi/155643.html