【www.guakaob.com--成人英语三级】
2015年全国卷1数学篇一:2015全国卷1数学试卷及答案(理科)
绝密★启封并使用完毕前
2015年普通高等学校招生全国统一考试
理科数学(全国卷Ⅰ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷2至6页。
第Ⅰ卷
一. 选择题:本大题共12小题。
(1)设复数z满足1+z
1z
=i,则|z|=
(A)1 (B
(C
(D)2 (2)sin20cos10cos160sin10
(A
)2 (B
)2
(C)12 (D)12
(3)设命题P:nN,n2>2n,则P为
(A)nN, n2>2n (B) nN, n2≤2n (C)nN, n2≤2n (D) nN, n2=2n
(4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A)0.648 (B)0.432 (C)0.36 (
D)0.312
(5)已知M(x
yx2
0,0)是双曲线C:2y
21 上的一点,F1、F2
是C上的两个焦点,
若MF1MF2<
0,则y0的取值范围是
(A)(
(B)(
(C)(3,3) (D)(3,3)
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
A.14斛 B.22斛 C.36斛 D.66斛
(7)设D为错误!未找到引用源。ABC所在平面内一点BC
3BC
,则
(A)AD14
3AB3
AC 错误!未找到引用源。
(B)AD
14
3AB3AC
(C)AD43AB13AC (D)AD41
3AB3
AC
(8)函数f(x)=错误!未找到引用源。的部分图像如图所示,则f(x)的单调递减区间为
(A)(k14,k34),kZ (B)(2k14,2k3
4),kZ
(C)(k14,k34),kZ (D)(2k13
4,2k4
),kZ
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=
(A)5 (B)6 (C)7 (D)8
(10)错误!未找到引用源。(x2xy)
5
的展开式中,x5y2的系数为 (A)10 (B)20 (C)30 (D)60
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16 + 20,则r=
(A)1 (B)2 (C)4 (D)8
12.设函数f(x)=ex(2x-1)-ax+a,其中a1,若存在唯一的整数x0,使得f(x0)0,则a的取值范围是( ) A.32e,1 B.333332e,4 C.2e,4 D. 2e
,1 第II卷
本卷包括必考题和选考题两部分。第(13)题-第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题未选考题,考生根据要求作答。 二、填空题:本大题共3小题,每小题5分
(13)若函数f(x)xln(xax2)为偶函数,则(14)一个圆经过椭圆x216
y2
4
1错误!未找到引用源。的三个顶点,且圆心在x轴上,则该圆的标准方程为 。
(15)若x,y满足约束条件
x10xy0错误!未找到引用源。则错误!未找到引用源。
xy40
x
y
的最大值为 . (16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是 .
三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分12分)
Sn为数列{an}的前n项和.已知an>0,an2an4Sn3错误!未找到引用源。
(Ⅰ)求{an}的通项公式,
(Ⅱ)设b1
na错误!未找到引用源。 ,求数列bn错误!未找到引用源。}的前n
nan1
项和。
(18)如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC。 (1)证明:平面AEC⊥平面AFC
(2)求直线AE与直线CF所成角的余弦值
(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
表中w1 ,w =
8
w1
x1
(Ⅰ)根据散点图判断,y=a+bx与y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据(Ⅱ)的结果回答下列问题:
(i) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii) 年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1 v1),(u2 v2)„„.. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
(20)(本小题满分12分)
xoy中,曲线C:y=x2
在直角坐标系4
与直线y=ks+a(a>0)交与M,N两点,
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当K变动时,总有∠OPM=∠OPN?说明理由。
(21)(本小题满分12分)
已知函数f(x)=x3ax1
4
,g(x)lnx
(Ⅰ)当a为何值时,x轴为曲线yf(x) 的切线;
(Ⅱ)用min m,n 表示m,n中的最小值,设函数h(x)minf(x),g(x)(x0) ,讨
论h(x)零点的个数
2015年全国卷1数学篇二:2015全国卷1数学试卷及答案(文科)
绝密★启封并使用完毕前
2015年普通高等学校招生全国统一考试
文科数学(全国卷Ⅰ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至6页。
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分。
1、已知集合A{xx3n2,nN},B{6,8,10,12,14},则集合A (A) 5 (B)4 (C)3 (D)2
2、已知点A(0,1),B(3,2),向量AC(4,3),则向量BC
(A) (7,4) (B)(7,4) (C)(1,4) (D)(1,4)
3、已知复数z满足(z1)i1i,则z( )
(A) 2i (B)2i (C)2i (D)2i B中的元素个数为
4、如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
(A) 3111 (B) (C) (D) 5101020
12,E的右焦点与抛物线C:y8x的焦点重合,A,B25、已知椭圆E的中心为坐标原点,离心率为
是C的准线与E的两个交点,则AB
(A) 3 (B)6 (C)9 (D)12
6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有
委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙
角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米
堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62
立方尺,圆周率约为3,估算出堆放的米有( )
(A)14斛 (B)22斛 (C)36斛 (D)66斛
7、已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S84S4,则a10( )
(A) 1719 (B) (C)10 (D)12 22
8、函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为( )
(A)(k1313,k),kZ (B)(2k,2k),k
Z 4444
(C)(k1313,k),kZ (D)(2k,2k),kZ 4444
9、执行右面的程序框图,如果输入的t0.01,则输出的n( )
(A) 5 (B)6 (C)10 (D)12
2x12,x110、已知函数f(x) ,且f(a)3,则f(6a)
log2(x1),x1
(A)4531 (B) (C) (D) 7444
11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620,则r( )
(A)1 (B)2 (C)4 (D)8
xa12、设函数yf(x)的图像与y2的图像关于直线yx对称,且f(2)f(4)1,
则a( )
(A) 1 (B)1 (C)2 (D)4
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分
13、数列an中a12,an12an,Sn为an的前n项和,若Sn126,则n.
14.已知函数fxaxx1的图像在点1,f1的处的切线过点2,7,则 a3
xy2015. 若x,y满足约束条件x2y10 ,则z=3x+y的最大值为.
2xy20
y2
1的右焦点,P是C
左支上一点,A ,当APF周长最小16.已知P是双曲线C:x82时,该三角形的面积为 .
三、解答题
17. (本小题满分12分)已知a,b,c分别是ABC内角A,B,C的对边,sinB2sinAsinC. (I)若ab,求cosB;
(II)若B
90,且a 求ABC的面积.
18. (本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE平面ABCD, (I)证明:平面AEC平面BED;
(II)若ABC120,AEEC, 三棱锥E
ACD的体积为
2. 3
19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi,和年销售量yii1,2,3,,8的数据作了初步处理,得到下面的散点图及一些统计量的值
.
(I)根据散点图判断,ya
bx与ycy关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为z0.2yx ,根据(II)的结果回答下列问题: (i)当年宣传费x90时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1 v1),(u2 v2)…….. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
20(本小题满分12分)已知过点A1,0且斜率为k的直线l与圆C:x2y31交于M,22
N两点.
(I)求k的取值范围; (II)OMON12,其中O为坐标原点,求MN
.
21. (本小题满分12分)设函数fxe2xalnx.
2. a(I)讨论fx的导函数fx的零点的个数; (II)证明:当a0时fx2aaln
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号
22. (本小题满分10分)选修4-1:几何证明选讲
2015年全国卷1数学篇三:2015年高考全国卷1理科数学(解析版)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设复数z满足1+z=i,则|z|= 1z
(A)1 (B
(C
(D)2
【答案】
A
考点:1.复数的运算;2.复数的模.
(2)sin20°cos10°-con160°sin10°=
(A
)【答案】D
【解析】
1试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=,故选D. 2
考点:诱导公式;两角和与差的正余弦公式 11 (B
(C) (D) 22
(3)设命题P:nN,n2>2n,则P为
(A)nN, n2>2n (B) nN, n2≤2n
(C)nN, n2≤2n (D) nN, n2=2n
【答案】C
【解析】
试题分析:p:nN,n22n,故选C.
考点:特称命题的否定
(4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为
(A)0.648 (B)0.432 (C)0.36 (D)0.312
【答案】A
【解析】
试题分析:根据独立重复试验公式得,该同学通过测试的概率为
C320.620.40.63=0.648,故选A.
考点:独立重复试验;互斥事件和概率公式
x2
(5)已知M(x0,y0)是双曲线C:y21上的一点,F1、F2是C上的两个焦2
点,若MF1MF2<0,则y0的取值范围是
(A)(
(B)(
)
(C)
(
) (D)
(
) 【答案】
A
考点:向量数量积;双曲线的标准方程
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )
A.14斛 B.22斛 C.36斛 D.66斛
【答案】
B
考点:圆锥的体积公式
(7)设D为ABC所在平面内一点BC3CD,则( )
(A)AD1
3AB414
3AC (B)AD3AB3AC
(C)AD4
3AB1
3AC (D)AD4
3AB1
3AC
【答案】A
【解析】
试题分析:由题知
ADACCDAC1
3BCAC114
3(ACAB)=3AB3AC,故选A.
考点:平面向量运算
(8) 函数f(x)=cos(x)的部分图像如图所示,则f(x)的单调递减区间为
(A)(),k (b)(),k
(C)(),k (D)(),k
【答案】D
【解析】
1+42,试题分析:由五点作图知,解得=,所以f(x)cos(x),=,445+3
42
令2kx
(2k42k,kZ,解得2k13<x<2k,kZ,故单调减区间为4413,2k),kZ,故选D. 44
考点:三角函数图像与性质
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=
(A)5 (B)6 (C)7 (D)8
【答案】C
【解析】
1m试题分析:执行第1次,t=0.01,S=1,n=0,m==0.5,S=S-m=0.5,m=0.25,n=1,S=0.5>t=0.01,22
是,循环,
m=0.125,n=2,S=0.25>t=0.01,是,循环, 2
m执行第3次,S=S-m=0.125,m=0.0625,n=3,S=0.125>t=0.01,是,循环, 2
m执行第4次,S=S-m=0.0625,m=0.03125,n=4,S=0.0625>t=0.01,是,循环, 2
m执行第5次,S=S-m=0.03125,m=0.015625,n=5,S=0.03125>t=0.01,是,循环, 2
m执行第6次,S=S-m=0.015625,m=0.0078125,n=6,S=0.015625>t=0.01,是,循环, 2
m执行第7次,S=S-m=0.0078125,m=0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,2执行第2次,S=S-m=0.25,m
故选C.
考点:程序框图
(10)(xxy)的展开式中,xy的系数为
(A)10 (B)20 (C)30(D)60 2552
【答案】C
2015年全国卷1数学篇四:2015全国卷1文科数学试题(附答案)
绝密★启封并使用完毕前
2015年普通高等学校招生全国统一考试
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。 3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n N},B={6,8,12,14},则集合A B中元素的个数为 (A)5 (B)4 (C)3 (D)2 (2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=
(A)(-7,-4) (B)(7,4) (C)(-1,4) (D)(1,4) (3)已知复数z满足(z-1)i=i+1,则z=
(A)-2-I (B)-2+I (C)2-I (D)2+i
(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组
勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为
10111
(A) (B) (C) (D)
351020
1
(5)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y²=8x
2
的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
A.14斛 B.22斛 C.36斛 D.66斛
是公差为1的等差数列,
则=4,
=
(7)已知
(A) (B
) (C)10 (D)12 (8)函数
f(x)=
的部分图像如图所示,则f(x)的单调递减区间为
(A)(k
-, k-
, 2k
-),k-),k
(A)(2k
(A)(k-, k-),k
(A)(2k-
, 2k-),k
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=
(A)5 (B)6 (C)7 (D)8 (10)已知函数(A)-,且f(a)=-3,则f(6-a)=
7531 (B)- (C)- (D)- 4444
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则
r=
(A)1 (B) 2 (C) 4 (D) 8
(12)设函数y=f(x)的图像关于直线y=-x对称,且f(-2)+f(-4)=1, 则a=
(A)-1 (B)1 (C)2 (D)4
2015年普通高等学校招生全国统一考试
文科数学 第Ⅱ卷
注意事项:
第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。若在试卷上作答,答案无效。
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答。第22题~ 第24题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分
(13)在数列{an}中, a1=2,an+1=2an, Sn为{an}的前n项和。若-Sn=126,则n=. (14)已知函数f(x)=ax3+x+1的图像在点(1,f(1))处的切线过点(2,7),则(15)x,y满足约束条件
2
,则z=3x+y的最大值为.
y2
(16)已知F是双曲线C:x-=1的右焦点,P是C的左支上一点,A(0,66).
8
当△APF周长最小是,该三角形的面积为
三.解答题:解答应写出文字说明,证明过程或演算步骤
(17)(本小题满分12分)
已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinAsinC (Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=2,求△ABC的面积
(18)(本小题满分12分)
如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED;
(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥—ACD的体积为
6
,求该三棱锥的侧3
面积 (19)(本小题满分12分)
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的
年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
1表中w1 ,w =
8
w1
i1
8
(1) 根据散点图判断,y=a+bx与y关于年宣传费x的
回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据(Ⅱ)的结果回答下列问题:
(i) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii) 年宣传费x为何值时,年利率的预报值最大? 附:对于一组数据(u1 v1),(u2 v2)„„.. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
2015年全国卷1数学篇五:2015年全国卷1文科高考真题数学卷word版(附答案)
2015年普通高等学校招生全国统一考试(新课标1卷)文
一、选择题:每小题5分,共60分
1、已知集合A{xx3n2,nN},B{6,8,10,12,14},则集合A (A) 5 (B)4 (C)3 (D)2
2、已知点A(0,1),B(3,2),向量AC(4,3),则向量BC
(A) (7,4) (B)(7,4) (C)(1,4) (D)(1,4)
3、已知复数z满足(z1)i1i,则z( )
(A) 2i (B)2i (C)2i (D)2i B中的元素个数为
4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
(A) 3111 (B) (C) (D) 1051020
5、已知椭圆E的中心为坐标原点,离心率为
是C的准线与E的两个交点,则AB 12,E的右焦点与抛物线C:y8x的焦点重合,A,B2
(A) 3 (B)6 (C)9 (D)12
6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:
“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思
为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆
底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多
少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放
的米约有( )
(A)14斛 (B)22斛 (C)36斛 (D)66斛
7、已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S84S4,则a10( )
(A) 1719 (B) (C)10 (D)12 22
8、函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为( )
(A)(k13,k),kZ 44
13,2k),k
Z 44(B)(2k
(C)(k13,k),kZ 44
(D)(2k
13,2k),kZ 44
9、执行右面的程序框图,如果输入的t0.01,则输出的n( )
(A) 5 (B)6 (C)7 (D)8
2x12,x110、已知函数f(x) , log2(x1),x1
且f(a)3,则f(6a)
(A)
(B)
(C)
(D)
11、圆柱被一个平面截去一部分后与半球(半径为r
)组成一个几何体,该几何体的三视图中的正视7 45 43 41 4
图和俯视图如图所示,若该几何体的表面积为1620,则r( )
(A)1
(B)2
(C)4
(D)8
12、设函数yf(x)的图像与y2xa的图像关于直线yx对称,且
f(2)f(4)1,则a( )
(A) 1 (B)1 (C)2 (D)4
二、填空题:本大题共4小题,每小题5分
13、数列an中a12,an12an,Sn为an的前n项和,若Sn126,则n14.已知函数fxaxx1的图像在点1,f1的处的切线过点2,7,则 3axy2015. 若x,y满足约束条件x2y10 ,则z=3x+y的最大值为
2xy20
y2
1的右焦点,P是C
左支上一点,A ,当APF周长最小16.已知F是双曲线C:x82时,该三角形的面积为 .
三、解答题
217. (本小题满分12分)已知a,b,c分别是ABC内角A,B,C的对边,sinB2sinAsinC.
(I)若ab,求cosB;
(II)若B
90,且a 求ABC的面积.
18. (本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE平面ABCD,
(I)证明:平面AEC平面BED;
(II)若ABC120,AEEC, 三棱锥E
ACD. 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yii1,2,,8数据作了初步处理,得到下面的散点图及一些统计量的值
.
(I)根据散点图判断,ya
bx与ycy关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为z0.2yx ,根据(II)的结果回答下列问题: (i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
20. (本小题满分12分)已知过点A1,0且斜率为k的直线l与圆C:x2y31交于M,N两点.
(I)求k的取值范围;
(II)若OMON12,其中O为坐标原点,求MN.
21. (本小题满分12分)设函数fxe2x22alnx.
(I)讨论fx的导函数fx的零点的个数;
(II)证明:当a0时fx2aaln2. a
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
22. (本小题满分10分)选修4-1:几何证明选讲
如图AB是O直径,AC是O切线,BC交O与点E
.
(I)若D为AC中点,证明:DE是O切线;
(II
)若OA ,求ACB的大小.
23. (本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,直线C1:x2,圆C2:x1y21,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(I)求C1,C2的极坐标方程.
(II)若直线C3的极坐标方程为22πR,设C2,C3的交点为M,N,求C2MN 的面积. 4
24. (本小题满分10分)选修4-5:不等式选讲
已知函数fxx2xa,a0 .
(I)当a1 时求不等式fx1 的解集;
(II)若fx的图像与x轴围成的三角形面积大于6,求a的取值范围.
2015年全国卷1数学篇六:2015年全国卷1文科数学
绝密★启封并使用完毕前
2015年普通高等学校招生全国统一考试
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。 3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n N},B={6,8,12,14},则集合A B中元素的个数为 (A)5 (B)4 (C)3 (D)2 (2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=
(A)(-7,-4) (B)(7,4) (C)(-1,4) (D)(1,4) (3)已知复数z满足(z-1)i=i+1,则z=
(A)-2-I (B)-2+I (C)2-I (D)2+i
(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾
股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为
10111
(A) (B) (C) (D)
351020
1
(5)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y²=8x
2
的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
A.14斛 B.22斛 C.36斛 D.66斛
是公差为1的等差数列,
则=4,
=
(7)已知
(A) (B
) (C)10 (D)12 (8)函数
f(x)=
的部分图像如图所示,则f(x)的单调递减区间为
(A)(k
-, k-
, 2k
-),k-),k
(A)(2k
(A)(k
-, k-),k
(A)(2k-
, 2k-),k
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=
(A)5 (B)6 (C)7 (D)8 (10)已知函数(A)-,且f(a)=-3,则f(6-a)=
7531 (B)- (C)- (D)- 4444
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则
r=
(A)1 (B) 2 (C) 4 (D) 8
(12)设函数y=f(x)的图像关于直线y=-x对称,且f(-2)+f(-4)=1, 则a=
(A)-1 (B)1 (C)2 (D)4
第Ⅱ卷
二.填空题:本大题共4小题,每小题5分
(13)在数列{an}中, a1=2,an+1=2an, Sn为{an}的前n项和。若-Sn=126,则n=. (14)已知函数f(x)=ax3+x+1的图像在点(1,f(1))处的切线过点(2,7),则(15)x,y满足约束条件
2
,则z=3x+y的最大值为.
y2(16)已知F是双曲线C:x-=1的右焦点,P是C的左支上一点,A(0,66).8
当△APF周长最小是,该三角形的面积为
三.解答题:解答应写出文字说明,证明过程或演算步骤
(17)(本小题满分12分)
已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinAsinC (Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=2,求△ABC的面积
(18)(本小题满分12分)
如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED;
(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥—ACD的体积为
6
,求该三棱锥的侧面3
积 (19)(本小题满分12分)
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
1
表中w1 ,w =
8
w1
i1
8
(1) 根据散点图判断,y=a+bx与y关于年宣传费x的回
归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据(Ⅱ)的结果回答下列问题:
(i) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii) 年宣传费x为何值时,年利率的预报值最大? 附:对于一组数据(u1 v1),(u2 v2)„„.. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
(20)(本小题满分12分)
已知过点A(0,1)且斜率为k的直线l与圆C(x-2)2+(y-3)2=1交于M,N两点. (1) 求K的取值范围;
2015年全国卷1数学篇七:2015年高考全国卷1理科数学试题及答案解析(word精校版)
2015年高考全国卷1理科数学试题及答案解析(word精校版) 注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。 3.全部答案在答题卡上完成,答在本试题上无效。 4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设复数z满足1+z=i,则|z|= 1z
(A)1 (B
(C
(D)2
(2)sin20°cos10°-con160°sin10°=
(A
)11(B
) (C) (D) 2222
2(3)设命题P:nN,n>2,则P为
(A)nN, n>2 (B) nN, n≤2
(C)nN, n≤2 (D) nN, n=2
(4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概22nn2nn2n率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为
(A)0.648 (B)0.432 (C)0.36 (D)0.312 x2
y21上的一点,F1,F2是C上的两个焦点,若(5)已知M(x0,y0)是双曲线C:2
MF1MF20,则y0的取值范围是
(A)(
(B)(
(C)
(
,) (D)
(
,) 3333
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
(7)设D为ABC所在平面内一点BC3CD,则 A.14斛 B.22斛 C.36斛 D.66斛
1414ABAC (B) ADABAC 3333
4141(C)ADABAC (D) ADABAC 3333(A)AD(8)函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为 1313,k),kZ (B) (2k,2k),kZ 4444
1313(C) (k,k),kZ (D) (2k,2k),kZ 4444(A)(k
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=
(A)5 (B)6 (C)7 (D)8
(10)(x2xy)5的展开式中,x5y2的系数为
(A)10 (B)20 (C)30 (D)60
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16 + 20,则r=
(A)1 (B)2 (C)4 (D)8
12.设函数f(x)ex(2x1)axa,其中a1,若存在唯一的整数x0,使得f(x0)0,则a的取值范围是( ) A.[ 333333,1) B. [,) C. [,) D. [,1) 2e2e42e42e
第II卷
本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题未选考题,考生根据要求作答。
二、填空题:本大题共3小题,每小题5分
(13
)若函数f(x)xln(x为偶函数,则ax2y2
1的三个顶点,且圆心在x轴上,则该圆的标准方程为。 (14)一个圆经过椭圆164
x10,y(15)若x,y满足约束条件xy0,则的最大值为 .
xy40,x(16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是
三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
Sn为数列{an}的前n项和.已知an0,an22an4Sn3,
(Ⅰ)求{an}的通项公式: (Ⅱ)设bn1 ,求数列{bn}的前n项和。 anan1
(18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC。
(1)证明:平面AEC⊥平面AFC
(2)求直线AE与直线CF所成角的余弦值
(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i1,2,...,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
2015年全国卷1数学篇八:2015年全国卷(1)理科数学真题
2015年全国卷理科数学真题
数学(理科)
参考公式:
如果事件A与B互斥,那么P(AB)P(A)P(B); 标准差
:s
其中x
1
(x1x2n
xn).
一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。 (1)设i是虚数单位,则复数
2i
在复平面内所对应的点位于 1i
(A)第一象限 (B)第二象限(C)第三象限(D)第四象限
2i
1i,选B. 1i
(2)下列函数中,既是偶函数又存在零点的是
(A)ycosx (B)ysinx (C)ylnx (D)yx21 选A.
(3)设p:1x2,q:2x1 ,则p是q成立的
(A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 选A.
4、下列双曲线中,焦点在y轴上且渐近线方程为y2x的是( )
y2x2y2x2222
x1 (By1 (Cx1 (D)y1 (A)
4444
2
选.
5、已知m,n是两条不同直线,,是两个不同平面,则下列命题正确的是( ) (A)若,垂直于同一平面,则与平行 (B)若m,n平行于同一平面,则m与n平行
(C)若,不平行,则在内不存在与平行的直线
(D)若m,n不平行,则m与n不可能垂直于同一平面 选D.
6、若样本数据x1,x2,,x10的标准差为8,则数据2x11,2x21,,2x101的标准差为( )
(A)8 (B)15 (C)16 (D)32
2
若样本数据x1,x2,,x10的方差为S,数据2x11,2x21,,2x101的方差为S0,2则S04S2,所以所求标准差为16,选C.
2
7、一个四面体的三视图如图所示,则该四面体的表面积是( ) (A
)1 (B
)2(C
)1 (D
)侧(左)视图
如图,面ABC面ABD
,ACBCADBDAB2,E是AB的中点,选B.
角形,已知向量a,b满足下列结论正确的是( )
C是边长为2的等边三8、
2a,C2ab,则(Ab1 (B)ab
(C)ab1 (D)
因为C是边长为2的等边三角形,所以
4abC
2
C2a(2ab)4cos602,即a(2ab)2aab1,又|||2a|2,所以|a|1,因此ab1 ;
因为BCACABb,所以|b|2,因此
(4ab)C(4ab)b4abb0,所以选D.
另:可画图,得(A)(B)(C)均错,选D. 9、函数fx
2
axb
xc
2
的图象如图所示,则下列结论成立的是( )
(A)a0,b0,c0 (B)a0,b0,c0 (C)a0,b0,c0 (D)a0,b0,c0 由fx
axb
xc
2
的定义域知c0,即c0;由f(0)0知
b0;fx
ax22bxac22bc
xc
2
2
,则ax2bxac2bc0有一解为c,另一解
22
为x0(0,c) ;而ax2bxac2bc0的解为x0xc,所以a0,即a0;选C.
10、已知函数fxsinx(,,均为正的常数)的最小正周期为,当
2
2
时,函数fx取得最小值,则下列结论正确的是( ) 3
(A)f2f2f0 (B)f0f2f2 x
(C)f2f0f2 (D)
f2f0f2
作图知,选(A)
二、填空题:本大题共5小题。每小题5分,共25填在答题卡的相应位置 11.(x案)
3
17
)的展开式中x5的系数是x
r3(7r)r214r4
,由214r5得r4 ,所以C7Tr1C7xxrC7x35.
12.在极坐标中,圆8sin上的点到直线画图.6
3
(R)距离的最大值是
13.执行如图所示的程序框图(算法流程图),输出的n为 n4
14.已知数列{an}是递增的等比数列,a1a49,a2a38,则数列{an}的前n项和等于因为a2a3a1a48,所以a1,a4是x9x80的解,又数列{an}是递增的等比数列,所以
2
a11
,因此数列{an}的前
a48
n项和等于2n1 .
15. 设xaxb0,其中a,b均为实数,下列条件中,使
得该三次方程仅有一个实根的是 (写出所有正确条件的编号)
3
(1)a3,b3;(2)a3,b2;(3)a3,b2;(4)a0,b2;(5)a1,b2.
32
解:令f(x)xaxb,f(x)3xa,当a0时,f(x)0,则f(x)在R上单调递增函
数,此时xaxb0仅有一个实根,所以(4)(5)对;
2
当a3时,由f(x)3x30得1x1,所以x1 是f(x)的极小值点,由
3
f(1)0,得1331b0,即b2,(3)对.
x1 是f(x)的极大值点,由f(1)0,得(1)33(1)b0,即b2,(1)对.
(1)(3)(4)(5)
三、解答题:本大题共6小题,共75分。解答应写出必要的文字说明、证明过程及演算步骤.解答写在答题卡上的指定区域内 16.在
ABC中,A解中
,
3
,AB6,AC,点D在BC边上,ADBD,求AD的长。 4
ABC:在
BC2AC2AB22ACABcosA183626(
90,即
2
BC;
从而ACBCAB2BCABcos
B,cosB
2
2
2
; 又ADBD,
所以BDcosB
BD3 ,
所以ADBD10
(17) (本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或3件正品时所需要的检测费用(单位:元),求X的分布列和均值.
解:(1) P(第一次检测出的是次品且第二次检测出是正品)
233
; 5410
(2) X的可能取值为200,300,400 X200表示前2次取出的是次品;
X300表示前2次取出的是1件次品和1件正品,第三次取出的是次品;或前3次取出的都是正品;
X400表示前3次取出的是1件次品和2件正品,第四次取出的是1件次品; 前3次取出的是1件次品和2件正品,第四次取出的是1件正品.
1133122
2C2C3A32A3C2C3A2136
;. P(X200)2,P(X300)P(X400)34
A510A510A510
E(X)200
136
300400350 . 101010
*
第一次检测出的是次品且第二次检测出是正品 (18) (本小题满分12分)设nN,xn是曲线yx横坐标.
(1)求数列{xn}的通项公式;
22
(2)记Tnx1x3
2
Tx2n1,证明:n2n1
2n2
1在点(1,2) 处的切线与x轴交点的
1
. 4n
2n2
解:(1) y(2n2)x,当x1 时,y2n2 ,所以曲线yx1在点(1,2) 处的
切线为y2(2n2)(x1); 因此曲线yx
2
2n2
1在点(1,2) 处的切线与x轴交点的横坐标xn
n; n1
2x2n1,则f(n)0;
(2)由(1)知x2n1
2n12(2n1)222
(),令f(n)4nTn4nx1x32
2n4n
222x2f(n1)4(n1)x12x3n12n124n24n1n1x2n1
因为()1 2222
f(n)4nx1x3x2n1n2n24n4n
122*
所以f(n)在nN单调递增的,因此f(n)f(1)4x14()1,所以f(n)1,即
2
1Tn.
4n
另:可用数学归纳法和放缩求积.
(19) (本小题满分13分)如图所示,在多面体A1B1D1DCBA中,四边形
AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F. (1)证明:EF<B1C;
(2)求二面角EA1DB1的余弦值.
∥,因此ABCD均为正方形,所以A1B1 ()1证明:因为AA1B1B,
B
D1
四边形A1B1CD是
B1C面A1DE,A1D面A1DE,所以B1C<面A1DE,又因为过
B1,C,D1平面交面A1DE于EF,所以EF<B1C.
(2) 取B1C中点M,取A1D中点H,连HM,HD1 ,则HM<CD,B
由四边形AA1B1B,ADD1A1,ABCD均为正方形知CDA1D,HD1A1D,因此A1D面MHD1,设面MHD1交EF于N.连HN,则A1DHN,A1DHM,所以MHN为二面角EA1DB1的平面角.
由(1)知EF<B1C,又E为B1D1的中点,所以N为MD1的中点. 设四边形AA11B1B,ADD1A1,ABCD的边长为2,在RtMHD
1. MD1
2HN2MH2MN2MH在MHN中
,cosMHN.
2HNMH2HN所以二面角EA1D
B1中
,MH2,HD1
,所以A1D<B1C;而
D1
HNMN
BB
D另:可补形,也可建立坐标系来做.
x2y2
(20)(本小题满分13分)设椭圆E的方程为221(ab0),点O
ab
为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|2|MA|,直线OM
(1)求E的离心率e;
(2)设点C坐标为(0,b),N为线段AC中点,点N关于直线AB的对称点的纵坐标为E的方程.
解:(1)由点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|2|MA|,
7,求2
2015年全国卷1数学篇九:2015年全国高考数学试卷理科新课标1卷(精校含答案)
理科数学试卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)设复数Z满足
1Z
=i,则Z 1-Z
(A)1 (B)2 (C) (D)2 (2)sin20cos10cos160sin10 (A)-
113 (B) (C)- (D)
2222
(3)设命题P:nN,n22n,则P为
(A)(B)(C)(D)nN,n22n nN,n22n nN,n22n nN,n2=2n (4)投篮测试中,每人投3次,至少2次命中才能通过测试,已知某同学每次投篮命中的概率为0.6,且各次投篮是否命中相互独立,则该同学通过测试的概率为
(A)0.648 (B)0.432 (C)0.36 (D)0.312
x2
y21上的一点,F1,F2是双曲线C的两个焦点,(5)已知M(x0,y0)是双曲线C:2
若MF1MF20,则y0的取值范围是 (A)(
332222223
,) (,) (,) (,) (B)(C)(D)33663333
(6)《九章算术》是我国古代极为丰富的数学名著,
书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”,其意为:“在屋内角处堆放米(如图,米堆是一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的的体积和米堆放的米各为多少?”已知一斛米的体积约为1.62立方尺,圆周率约为3,估算出米堆的米约为
(A)14斛 (B)22斛 (C)36斛 (D)66斛 (7)设D为ABC所在平面内一点,3,则
1414
ABAC (B)ADAB-AC 33334141
(C) (D)
3333
(A)AD
(8)函数f(x)cos(x)的部分图像如图所示,则f(x)的单调减区间为
13,k),kZ 4413
(2k,2k),kZ (B)
4413(k,k),kZ (C)
4413(2k,2k),kZ (D)
44(k(A)
(9)执行右边的程序框图,如果输入的t=0.01,则输出的n= (A)5 (B)6 (C)7 (D)8 (10)(xxy)的展开式中,xy的系数为 (A)10 (B)20 (C)30(D)60 (11)圆柱被一平面截去一部分后与半球
(半径为r) 组成一个几何休,该几何体的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=
(A)1 (B)2 (C)4 (D)8
(12)设函数f(x)=e(2x-1)-ax+a,其中a1,若存在唯一的整数x0,使得f(x0)0,则a的取值范围是( )
(A)[- -错误!未找到引用源。,1) (B) [- 错误!未找到引用源。,错误!未找到引用源。) (C) [错误!未找到引用源。,错误!未找到引用源。) (D) [错误!未找到引用源。,1)
二、填空题:本大题共4小题,每小题5分。
(13)若函数f(x)xln(xax2)为偶函数,则a .
x
2552
x2y2
1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准(14)一个圆经过椭圆
164
方程为 。
x10
y
(15)若x,y满足约束条件xy0,则的最大值为 。
xxy40
A=B=C=75,(16)在平面四边形ABCD中,BC=2,则AB的取值范围是。
三、解答题:解答应写出文字说明,证明过程或演算步骤。
2
(17)(本小题满分12分)Sn是数列an的前n项和,已知an0,an2an4Sn3
(Ⅰ)求数列an的通项公式; (Ⅱ)设 bn
(18)(本小题满分12分)如图,四边形ABCD是菱形,
1
,求数列{bn}的前n项和. anan1
ABC=1200 ,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC
(Ⅰ)证明:平面AEC平面AFC; (Ⅱ)求直线AE与直线CF所成有的余弦值。
(19)(本小题满分12分)某公司为确定下一年的投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润(单位:千元)的影响,对近8年的年宣传费xi和对年销售量yi(i1,2,,8)数据作了初步处理,得到下面的散点图及一些统计量
的值,
18表中wixi,wwi
8i1
(Ⅰ)根据散点图,判断yabx与ycdx哪一个宜作为年销售量y关于年宣传费x的回归类型(给出判断即可,不必说明理由);
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y与x的回归方程;
(Ⅲ)已知这种产品年利润z与x,y之间的关系为z=0.2y-x,根据(Ⅱ)的结果回答问题 (i)年宣传费x=49时,年销售量及年利润的预报值为多少? (ii)年宣传费为何值时,年利润的预报值最大?
附:对于一组数据(u1 v1),(u2 v2)„„.. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
(uu)(vv)
i
i
i1
n
(uu)
i
i1
n
,vu
2
x2
(20)(本小题满分12分) 在平面直角坐标系xOy中,曲线C:y与直线
4
交于M,N两点。 l:ykxa(a0)
(Ⅰ)当k0时,分别求C在M点和N点处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有OPM=OPN?说明理由。
(21)(本小题满分12分)已知函数f(x)xax(Ⅰ)当a为何值时,x轴为曲线yf(x)的切线;
(Ⅱ)用minm,n表示m,n中的最小值,设函数h(x)minf(x),g(x)(x0)讨论函数
3
1
,g(x)lnx. 4
h(x)零点的个数。
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,AB是圆为的直径,AC是圆O的切线,BC交圆O与点E,
(Ⅰ)若D为AC的中点,证明:DE是圆O的切线; (Ⅱ)若OA3CE,求ACB的大小。
(23)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,直线C1x2 ,圆C2:(x1)2(y2)21 ,以坐标原点为极点,x轴的正半轴为级轴建立极坐标系
(Ⅰ)求C1,C2的极坐标方程;
(Ⅱ)若直线C3的极坐标方程为=R),设C2与C3的交点为M,N,求
4
C2MN的面积。
(24)(本小题满分10分)选修4-5:不等式选讲
设函数f(x)x2xa,a0。 (Ⅰ)当a1时,求不等式f(x)1的解集;
(Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围。
2015年全国卷1数学篇十:2015年全国高考理科1数学试题及答案
绝密★启封并使用完毕前
试题类型:A
2015年普通高等学校招生全国统一考试
理科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷3至5
页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。 3.全部答案在答题卡上完成,答在本试题上无效。 4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要
求的。
(1) 设复数z满足
1+z
=i,则|z|= 1z
(A)1 (B
(C
(D)2
(2)sin20°cos10°-con160°sin10°= (A
)
11 (B
) (C) (D)
2222
2
(3)设命题P:nN,n>2,则P为
(A)nN, n>2 (B) nN, n≤2 (C)nN, n≤2 (D) nN, n=2
(4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概
22
n
n2n
n2n
率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为
(A)0.648 (B)0.432
(C)0.36
(D)0.312
x2
y21上的一点,F1,F2是C上的两个焦点,若(5)已知M(x0,y0)是双曲线C:2
MF1MF20,则y0的取值范围是
(A)(
,
(B)(
,
(C)
(
,) (D)
(
,)
3333
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
(7)设D为ABC所在平面内一点BC3CD,则
A.14斛 B.22斛 C.36斛 D.66斛
1414
ABAC (B) ADABAC 33334141
(C)ADABAC (D) ADABAC
3333
(A)AD
(8)函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为
1313
,k),kZ (B) (2k,2k),kZ 44441313
(C) (k,k),kZ (D) (2k,2k),kZ
4444
(A)(k
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n= (A)5 (B)6 (C)7 (D)8
(10)(x2xy)5的展开式中,x5y2的系数为
(A)10
(B)20
(C)30
(D)60
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16 + 20,则r=
(A)1
(B)2
(C)4
(D)8
12.设函数f(x)ex(2x1)axa,其中a1,若存在唯一的整数x0,使得f(x0)0,则a的取值范围是( )
A.[
333333
,1) B. [,) C. [,) D. [,1) 2e2e42e2e4
第II卷
本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题未选考题,考生根据要求作答。 二、填空题:本大题共3小题,每小题5分
(13
)若函数f(x)xln(x为偶函数,则ax2y2
1的三个顶点,且圆心在x轴上,则该圆的标准方程为。 (14)一个圆经过椭圆
164x10,
y
(15)若x,y满足约束条件xy0,则的最大值为 .
xy40,x
(16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是 三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分12分)
Sn为数列{an}的前n项和.已知an>0,(Ⅰ)求{an}的通项公式: (Ⅱ)设
,求数列
}的前n项和
(18)如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC。 (1)证明:平面AEC⊥平面AFC
(2)求直线AE与直线CF所成角的余弦值
(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
1表中w1 ,w =
8
w1
x1
1