高中必修二北师大数学课本

| 高中作文 |

【www.guakaob.com--高中作文】

高中必修二北师大数学课本(一)
北师大版数学必修二课后习题答案

高中必修二北师大数学课本(二)
高中数学知识点分析北师大版必修2

高中数学必修2知识点

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用kktan

当0,90时,k0; 当90,180时,k0; 当90时,k不存

在。 

②过两点的直线的斜率公式:ky2y1(x1x2) x2x1

注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b

③两点式:

④截矩式:yy1xx1(x1x2,y1y2)直线两点x1,y1,x2,y2 y2y1x2x1xy1 ab

其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。 ⑤一般式:AxByC0(A,B不全为0)

1各式的适用范围 ○2特殊的方程如: 注意:○

平行于x轴的直线:yb(b为常数); 平行于y轴的直线:xa(a为常数);

(4)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:A0xB0yC0(C为常数)

(二)垂直直线系

垂直于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:B0xA0yC0(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:

(ⅱ)过两条直线l1:

为 yy0kxx0,直线过定点x0,y0; A1xB1yC10,l2:A2xB2yC20的交点的直线系方程

,其中直线l2不在直线系中。 A1xB1yC1A2xB2yC20(为参数)

(5)两直线平行与垂直

当l1:yk1xb1,l2:yk2xb2时,

l1//l2k1k2,b1b2;l1l2k1k21

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(6)两条直线的交点

l1:A1xB1yC10 l2:A2xB2yC20相交

A1xB1yC10交点坐标即方程组的一组解。 A2xB2yC20

方程组无解l1//l2 ; 方程组有无数解l1与l2重合

(7)两点间距离公式:设A(x1,y1),(是平面直角坐标系中的两个点,

Bx2,y2)

则|AB|

(8)点到直线距离公式:一点Px0,y0到直线l1:AxByC0的距离dAx0By0C

A2B2

(9)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

二、圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的

半径。

2、圆的方程

(1)标准方程xaybr2,圆心22a,b,半径为r;

22(2)一般方程xyDxEyF0 DE,半径为r1D2E24F 当DE4F0时,方程表示圆,此时圆心为,2222

2

当DE4F0时,表示一个点; 当DE4F0时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线l:AxByC0,圆C:xa2yb2r2,圆心Ca,b到l的距离为dAaBbC,则有drl与C相离;drl与C相切;drl与C相交

A2B22222

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 设圆C1:xa12yb12r2,C2:xa22yb22R2

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 当dRr时两圆外离,此时有公切线四条;

当dRr时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当RrdRr时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当dRr时,两圆内切,连心线经过切点,只有一条公切线; 当dRr时,两圆内含; 当d0时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

截面距离与高的比的平方。

【高中必修二北师大数学课本】

(3)棱台:

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:主视图(光线从几何体的前面向后面正投影);左视图(从左向右)、 俯视图(从上向下)

注:主视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;左视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线) '

S直棱柱侧面积ch S圆柱侧2rh S正棱锥侧面积1ch' S圆锥侧面积rl 2

S正棱台侧面积

S圆柱表2rrl S圆锥表rrl S圆台表r2rlRlR2

(3)柱体、锥体、台体的体积公式 1(c1c2)h' S圆台侧面积(rR)l 2

1V柱Sh V圆柱Sh2r h V锥Sh V圆锥

1r2h 33

1'1122V台(S'S)h

V圆台(SS)h(rrRR)h 333

2 (4)球体的表面积和体积公式:V球=4R3 ; S球面=4R3

4、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用: 判断直线是否在平面内

用符号语言表示公理1:Al,Bl,A,Bl

公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一

平面。

公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:PABABl,Pl

公理3的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理4:平行于同一条直线的两条直线互相平行

空间直线与直线之间的位置关系

① 异面直线定义:不同在任何一个平面内的两条直线

② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 ④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:aα a∩α=A a∥α

(9)平面与平面之间的位置关系:平行——没有公共点;α∥β

相交——有一条公共直线。α∩β=b

5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行。线面平行线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。 ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题

(1)直线与直线所成的角

①两平行直线所成的角:规定为0。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。 ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

①平面的平行线与平面所成的角:规定为0。 ②平面的垂线与平面所成的角:规定为90。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射.....线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

高中必修二北师大数学课本(三)
高中数学知识点知识点分析北师大版必修2

高中数学必修2知识点

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k

当0,90时,k0; 当90,180时,k0; 当90时,k不存在。

yy1

(x1x2) ②过两点的直线的斜率公式:k2

x2x1注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程

①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b ③两点式:④截矩式:

yy1y2y1

xay

xx1x2x1

(x1x2,y1y2)直线两点x1,y1,x2,y2

b

其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。

1

⑤一般式:AxByC0(A,B不全为0)

1各式的适用范围 ○2特殊的方程如: 注意:○

平行于x轴的直线:yb(b为常数); 平行于y轴的直线:xa(a为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系

平行于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:

A0xB0yC0(C为常数)

(二)垂直直线系

垂直于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:

B0xA0yC0(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:yy0kxx0,直线过定点x0,y0;

(ⅱ)过两条直线l1:A1xB1yC10,l2:A2xB2yC20的交点的直线系方程为

,其中直线l2不在直线系中。 A1xB1yC1A2xB2yC20(为参数)(6)两直线平行与垂直

当l1:yk1xb1,l2:yk2xb2时, l1//l2k1k2,b1b2;l1l2k1k21

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点

l1:A1xB1yC10 l2:A2xB2yC20相交 交点坐标即方程组

A1xB1yC10

的一组解。

A2xB2yC20

方程组无解l1//l2 ; 方程组有无数解l1与l2重合 (8)两点间距离公式:设A(x1,y1),B是平面直角坐标系中的两个点,

(x2,y2)

则|AB|

(9)点到直线距离公式:一点Px0,y0到直线l1:AxByC0的距离d(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

Ax0By0C

AB

2

2

二、圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的

半径。

2、圆的方程

(1)标准方程xaybr2,圆心a,b,半径为r;

2

2

(2)一般方程x2y2DxEyF0 当DE

22

2

4F0时,方程表示圆,此时圆心为



2

2

D2

,

1E,半径为r

22

D

2

E

2

4F

当DE4F0时,表示一个点; 当DE4F0时,方程不表示任何图

形。

(3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线l:AxByC0,圆C:xa2yb2r2,圆心Ca,b到l的距离为d

AaBbCAB

2

2

2

,则有drl与C相离;drl与C相切;drl与C相交

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该

直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

22

设圆C1:xa12yb12r2,C2:xa2yb2R2 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 当dRr时两圆外离,此时有公切线四条;

当dRr时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当RrdRr时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当dRr时,两圆内切,连心线经过切点,只有一条公切线; 当dRr时,两圆内含; 当d0时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

三、立体几何初步

1、柱、锥、台、球的结构特征 (1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

截面距离与高的比的平方。

(3)棱台:

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图

定义三视图:主视图(光线从几何体的前面向后面正投影);左视图(从左向右)、 俯视图(从上向下)

注:主视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;左视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)

'【高中必修二北师大数学课本】

S直棱柱侧面积

S正棱台侧面积

12

ch S圆柱侧2rh S正棱锥侧面积

(c1c2)h' S圆台侧面积(rR)l

12

ch' S圆锥侧面积

rl

S圆柱表2rrl S圆锥表rrl S圆台表r2rlRlR2

(3)柱体、锥体、台体的体积公式 V柱Sh V圆柱Sh

V台

13(S

'

2

1

r h V锥Sh V圆锥

1r2h

3

3

S)h

V圆台

13

(S

'

S)h

3

13

(rrRR)h

22

(4)球体的表面积和体积公式:V球4、空间点、直线、平面的位置关系

=4R ; S

3

球面

=4R2

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用: 判断直线是否在平面内

用符号语言表示公理1:Al,Bl,A,Bl

公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一

平面。

公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:PABABl,Pl 公理3的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。 ③它可以判断点在直线上,即证若干个点共线的重要依据。 公理4:平行于同一条直线的两条直线互相平行 空间直线与直线之间的位置关系

① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 ④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 (8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:aα a∩α=A a∥α

(9)平面与平面之间的位置关系:平行——没有公共点;α∥β

相交——有一条公共直线。α∩β=b

5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行。线面平行线线平行

(2)平面与平面平行的判定及其性质 两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 (线线平行→面面平行),

【高中必修二北师大数学课本】

(3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行) (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行) 7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。 ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。 (2)垂直关系的判定和性质定理 ①线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题

(1)直线与直线所成的角

①两平行直线所成的角:规定为0。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。 ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

①平面的平行线与平面所成的角:规定为0。 ②平面的垂线与平面所成的角:规定为90。 ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。 (3)二面角和二面角的平面角 ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。 ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射.....线,这两条射线所成的角叫二面角的平面角。 ③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角 ④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角 垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

高中必修二北师大数学课本(四)
北师大版精品全册教案 高中数学必修2教案(共70页)〖无忧资源〗

北师大版精品全册教案 高中数学必修2教案 2.1.1直线的倾斜角和斜率

教学目标:

知识与技能

(1) 正确理解直线的倾斜角和斜率的概念. (2) 理解直线的倾斜角的唯一性. (3) 理解直线的斜率的存在性.

(4) 斜率公式的推导过程,掌握过两点的直线的斜率公式. 情感态度与价值观

(1) 通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭

示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.

(2) 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.

重点与难点: 直线的倾斜角、斜率的概念和公式. 教学用具:计算机

教学方法:启发、引导、讨论. 教学过程:

(一)直线的倾斜角的概念

我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, „易见,答案是否定的.这些直线有什么联系呢?

(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?

引入直线的倾斜角的概念:

当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规...定α= 0°.

问: 倾斜角α的取值范围是什么? 0°≤α<180°.

当直线l与x轴垂直时, α= 90°.

因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.

如图, 直线a∥b∥c, 那么它们

的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线. 确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P.和一个倾斜.....角α...

(二)直线的斜率:

一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα

⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在.

由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 例如, α=45°时, k = tan45°= 1;

α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1. 学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度. (三) 直线的斜率公式:

给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?

可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线, 共同完成斜率公式的推导.(略)

斜率公式:

对于上面的斜率公式要注意下面四点:

(1) 当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°, 直线与x轴垂直;

(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;

(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得; (4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x轴平行或重合. (5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.

(四)例题:

例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA的斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线, 图略)

分析: 已知两点坐标, 而且x1≠x2, 由斜率公式代入即可求得k的值; 而当k = tanα<0时, 倾斜角α是钝角; 而当k = tanα>0时, 倾斜角α是锐角; 而当k = tanα=0时, 倾斜角α是0°.

略解: 直线AB的斜率k1=1/7>0, 所以它的倾斜角α是锐角; 直线BC的斜率k2=-0.5<0, 所以它的倾斜角α是钝角; 直线CA的斜率k3=1>0, 所以它的倾斜角α是锐角.

例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l.

分析:要画出经过原点的直线a, 只要再找出a上的另外一点M. 而M的坐标可以根据直线a的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作45°的角, 再把所作的这一边反向延长成直线即可.

略解: 设直线a上的另外一点M的坐标为(x,y),根据斜率公式有 1=(y-0)/(x-0) 所以 x = y

可令x = 1, 则y = 1, 于是点M的坐标为(1,1).此时过原点和点

M(1,1), 可作直线a.

同理, 可作直线b, c, l.(用计算机作动画演示画直线过程) (五)练习: P91 1. 2. 3. 4. (六)小结:

(1)直线的倾斜角和斜率的概念. (2) 直线的斜率公式.

(七)课后作业: P94 习题3.1 1. 3. (八)板书设计:

直线的两点式方程

1(1(22 3(1)认识事物之间的普遍联系与相互转化; (2)培养学生用联系的观点看问题。 二、教学重点、难点:

1、 重点:直线方程两点式。

2、难点:两点式推导过程的理解。【高中必修二北师大数学课本】

3.2.3 直线的一般式方程

高中必修二北师大数学课本(五)
北师大版高中数学二必修2期末试题

高一数学必修2期末试题

一、选择题:

1. 倾斜角为135,在y轴上的截距为1的直线方程是( )

A.xy10 B.xy10 C.xy10 D.xy10 2. 原点在直线l上的射影是P(-2,1),则直线l的方程是 ( )

A.x2y0 B.x2y40

C.2xy50 D.2xy30

3. 如果直线l是平面的斜线,那么在平面内( )

A.不存在与l平行的直线 B.不存在与l垂直的直线 C.与l垂直的直线只有一条 D.与l平行的直线有无穷多条 4. 过空间一点作平面,使其同时与两条异面直线平行,这样的平面( )

A.只有一个 B.至多有两个 C.不一定有 D.有无数个

5. 直线ax3y90与直线x3yb0关于原点对称,则a,b的值是 ( ) A.a=1,b= 9 B.a=-1,b= 9 C.a=1,b=-9 D.a=-1,b=-9

6. 已知直线ykxb上两点P、Q的横坐标分别为x1,x2,则|PQ|为 ( )

A.x1x2k B.x1x2k

2

kk

7. 直线l通过点(1,3)且与两坐标轴的正半轴所围成的三角形面积为6,则直线l的方程

2

C.

x1x2

D.

x1x2

是 ( )

A.3xy60 B.3xy0 C.x3y100 D.x3y80

8. 如果一个正三棱锥的底面边长为6

9

B.9 227C.

D.

22

A.

9. 一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是 ( )

100208

cm3 B.cm3 335003

cm3 D

.cm C.33

A.

10. 在体积为15的斜三棱柱ABC-A1B1C1中,S是C1C上的一点,S-ABC的体积为3,则三棱锥S-A1B1C1的体积为 ( )【高中必修二北师大数学课本】

AB1

1

A.1 B.

3 2

C.2 D.3

11. 已知点A(2,3)、B(3,2)直线l过点P(1,1),且与线段AB相交,则直线l的斜率

的取值k范围是 ( )

331或k4 B.k或k 444

33

C.4k D.k4

44

A.k

12. 过点(1,2),且与原点距离最大的直线方程是( )

A.x2y50 B.2xy40

C.x3y70 D.x2y30

13. 过点P(2,3)且在两坐标轴上截距相等的直线的方程是____________. 14. 过点(-6,4),且与直线x2y30垂直的直线方程是___________.

15. 在正方体ABCD—A1B1C1D1中,BC1与平面BB1D1D所成

的角是 .

16.

已知两点A(1,2),B(2,1),直线x2ym0与线

段AB相交,则m的取值范围是 . 17. 如图,△ABC为正三角形,且直线BC的倾斜角是45°,

则直线AB,,AC的倾斜角分别为:AB__________,

AC____________.

18. 正四面体(所有面都是等边三角形的三棱锥)相邻两侧面所成二面角的余弦值是 . 三、解答题:

19. 已知平行四边形的两条边所在的直线方程分别是x+y+1=0和3x-y+4=0, 它的

对角线的交点是M(3, 0), 求这个四边形的其它两边所在的直线方程.

20. 正三棱台的上、下底边长为3和6.

(Ⅰ)若侧面与底面所成的角是60°,求此三棱台的体积; (Ⅱ)若侧棱与底面所成的角是60°,求此三棱台的侧面积;

21. 在△ABC中,BC边上的高所在的直线的方程为x2y10,∠A的平分线所在直

线的方程为y0,若点B的坐标为(1,2),求点 A和点 C的坐标..

22. 如图,在正方体ABCD—A1B1C1D1中,已知M为棱AB的中点. (Ⅰ)AC1//平面B1MC;

(Ⅱ)求证:平面D1B1C⊥平面B1MC.

23. 如图,射线OA、OB分别与x轴成45角和30角,过点P(1,0)作直线AB分别与

OA、OB交于A、B.

(Ⅰ)当AB的中点为P时,求直线AB的方程;

1

(Ⅱ)当AB的中点在直线yx上时,求直线AB的方程.

2

高一数学必修2期末试题参考答案

13

15.30° 16.[4,5] 17.105°;165° 18.19.xy70和3xy220.

1 3

31,V. h(a2abb2)23127(Ⅱ)h3,h',S(3a3b)h' 

22y0x1

21.由 得,即A的坐标为 (1,0),

x2y10y0

20

∴ kAB, 又∵ x轴为∠BAC的平分线,∴ kACkAB1,

11

又∵ 直线 x2y10为 BC边上的高, ∴ kBC2.

bb21,2, 设 C的坐标为(a,b),则

a1a1

解得 a5,b6,即 C的坐标为(5,6).

20.(Ⅰ)h

22.(Ⅰ)MO//AC1;

(Ⅱ)MO∥AC1,AC1⊥平面D1B1C ,MO⊥平面D1B1C ,平面D1B1C⊥平面B1MC. 23.解:(Ⅰ)由题意得,OA的方程为yx,OB的方程为y

3

x,设A(a,a), 3

ab2

得 a31, B(b,b)。∵ AB的中点为P(1,0), ∴ 

ab0

∴ kAB

312

1 即AB方程为 (1)xy310

1abab

,)在直线yx上,

222

(Ⅱ)AB中点坐标为(则

ab1a3b

,即a(23)b ① 

222

ab∵ kPAkPB, ∴ ② a1b13, 2

所以所求AB的方程为(3)x2y330

由①、②得a

,则 kAB

本文来源:http://www.guakaob.com/zuowendaquan/525268.html