掰蒜种机

| 劳动节 |

【www.guakaob.com--劳动节】

篇一 掰蒜种机
[我爱发明]大蒜种植机 铁手插蒜(发明人赵纯军)

  [我爱发明] 20150527 铁手插蒜

  本期视频主要内容: 山东商河县是我国的大蒜种植基地,每年到了种蒜的季节,蒜农就会因为巨大的劳动强度而发愁。发明人赵纯军也曾是手工种蒜的一员,在深知百姓种蒜的辛苦后,只有维修电视机经验的他,开始着手研发机器,最后经过13年的努力,他终于圆了自己的机械梦,成功研发出了大蒜种植机。(《我爱发明》 20150527 铁手插蒜)

  发明人联系方式:赵纯军 :18853129585

  《铁手插蒜》发明摘要:本发明属于农业机械领域,特别公开了一种大蒜种植机。该大蒜种植机,包括底部安装行走轮的机架,机架上安装有连接油箱的发动机和驾驶椅,其特征在于:发动机上连接有变速箱,变速箱上方设置有位于驾驶椅前面的操控箱,变速箱内伸出若干个传动轴,机架前方通过升降杆安装有播种装置,机架后方安装有压平辊;播种装置包括安装在送料斗内的拨料辊,拨料辊上设置有均布成排的三齿状拨料爪,拨料辊下方设置有对应拨料爪的输料管,输料管末端为内部中空,底部设置出口的开孔器。本发明结构设计合理,应用灵活,使用方便,有效降低种蒜时的劳动强度,单粒播种,漏播率低,株距均匀,播种深度可自由调节,适于广泛推广应用。

  

  

  

  

  

  

篇二 掰蒜种机
[我爱发明]大蒜播种机 种蒜机 站立吧,大蒜(发明人崇峻)

  [我爱发明] 20160902 站立吧 大蒜

  本期节目主要内容: 山东济南的发明人崇峻发明了一台大蒜播种机。这种机器有一套橡胶履带式行走系统,在田地里有着良好的通过性。通过一套自动上料系统,一瓣一瓣的大蒜被提升到较高的地方,随后分别顺着20根塑料导管掉落在对应的20个锥形碗中,锥形碗里的弧度可以让蒜瓣的尖朝上,最后这些蒜瓣再分别通过20个中空的金属管插入土里。这样就完成了种蒜的过程。(《我爱发明》 20160902 站立吧 大蒜)

  发明人联系方式:崇峻

  摘要:本实用新型涉及农用机械领域,特别涉及一种大蒜播种机。该大蒜播种机,其特征在于:包括机架、发动机、传动总成、气泵、气缸、履带底盘总成、土壤整平器、以及位于履带底盘总成上方的操作台、微电脑电控系统,所述操作台的前方设有给料仓,所述给料仓与提料装置连接,所述提料装置上方均匀安装有若干分料器,所述每个分料器下方连接分料管,所述分料管底部与导向料杯总成连接,导向料杯总成固定在第一定位板上,导向料杯总成的下方为调整料杯总成,调整料杯总成下方为点插播种器总成,所述点插播种器总成安装在开合处理支撑架上,所述导向料杯总成、调整料杯总成和点插播种器总成分别通过气缸控制开合,通过行走系统控制步进幅度。

  

  

  

  

  编辑手记:

  蒜可是好东西,不仅可以调味,还能杀菌、增强人的免疫力,而蒜的种植过程也是很辛苦的,全程又是蹲着又是弯腰,费时费力。今天这位发明人,就是因为看到自己的乡亲邻居们常年手工种大蒜,既辛苦又伤身体,于是反复研究,制作出了一台大蒜播种机来帮助大家。

  发明人:崇峻

  发明项目:大蒜播种机

  发明原理

       机器的最上方有一排小勺,将每颗蒜分别放进一个个圆形粗管里,大蒜通过每一根管子漏入小碗中,最后,一个圆锥形铁夹将这些蒜种到地里。

  给记者简单地讲解了种蒜机的运行过程后,崇峻马上开启机器演示起来,一颗颗大蒜被这台机器很快地插进土里。

  大蒜在种进地里的时候,必须让它尖朝上,这样才有利于大蒜的生长,如果蒜躺倒了就算大蒜的播种不合格。崇峻的机器正是在这里出了问题,机器种的蒜大部分都是躺着的,这显然是不行的。

  经过反复试验,崇峻将小碗的底部从圆弧形换成了锥子形,这样就保证了每颗掉进小碗的大蒜都是尖朝上的。

  为了测试机器的性能,崇峻准备去老刘的地里试一试,进行一场人工与机器的比赛,比赛当天聚集了很多观赛者。乡亲们有支持崇峻机器的,也有人支持农民师傅的,但是大家都希望这台机器可以替代手工种蒜。

  五人一组的人工队在速度上丝毫不落后于机器,两组人分别从地里的两头向中间行进。农民师傅队伍庞大、经验丰富,进展得很快。

  而崇峻这边的机器却遇到了问题,插入土里的种蒜夹口里很容易被湿的泥土堵住。
另外,由于崇峻的这台大型种蒜机是履带工作,压过去的地方明显有很深的凹槽,会把种蒜的地方压的很深,使得两边的地势不一样。浇灌时水都会流向地势较低的那一边,这样一来地势低的大蒜就很容易被水泡坏,而地势高的大蒜得不到很好的浇灌,解决了大蒜竖起率和被履带碾压地势不平的问题后,崇峻的第三代大蒜播种机终于亮相。

       新一代大蒜播种机通过平台操作,人工将蒜倒入到平槽内,通过一个个小勺将蒜喂入管道中,再漏进20个锥形底的小碗里,通过插入地里的种蒜口将大蒜最后种进地里。播种蒜的同时用碾子稍微用力压平,这样不仅保证了种蒜的质量,而且使大蒜能得到充分的浇灌新一轮的比试中,刘师傅把他的人工队伍壮大到了25人,比上次多出了一倍多。

  这场终级比拼到底能不能让这台种蒜机大放光彩呢?我们拭目以待。

  欢迎收看《我爱发明》之《站立吧,大蒜》。

篇三 掰蒜种机
大蒜播种机

1 大蒜播种过程特点及机械化播种迫切性

1.1 播种过程特点

1.1.1农艺影响

大蒜鳞牙朝向,脊背朝向是大蒜播种时的两项重要农艺要求。这两项农艺条件对大蒜生产的产量,质量和收益产生比较大影响。甚至影响到种植是否成立的程度,如果大蒜播种时,鳞牙朝下比例比较大的话,这季大蒜种植基本上亏损。

大蒜播种时的其他农艺要求,如行距,株距,播种深度,播种时间等条件虽然对大蒜的产出效益影响也比较大,但这些条件很方便采用机械化方式去实现和控制。因而在机械化大蒜播种中,这不是主要影响因素。

鳞牙的朝向对大蒜的影响,主要是对蒜头重量和横径产生影响。依据普遍农户大蒜生产得到的经验及南京农业机械化研究所的研究表明(参考文章:金诚谦等 大蒜播种时鳞芽朝向对大蒜生长发育影响的试验研究,农业工程学报,2008-04):播种时鳞芽朝下时,收获蒜头重量轻,横径小。单体与鳞牙朝上比,重量只到60%,横径只到80%(横径与大蒜价格关系是非线性关系,基本上倒立栽培产出蒜果均处于严重低价区域),倒立播种在相同条件下的产出价值仅为朝上播种产出价值的49%(相关分析见附录)。

大蒜种植时脊背朝向主要影响大蒜生长时的叶片朝向,进而影响叶片光合作用和产量。其影响的显著度不及鳞径朝向的影响,目前有这方面研究、试验及论文,但暂时没有找到。

1.1.2 劳动强度大

为保证大蒜播种时的鳞牙朝上和行株距的一致性,国内主要采用人工播种。播种时为保证鳞牙朝上,播种人员一般从蹲到跪,或者半蹲半跪的方式播种,其劳动强度可想而言。即使和其他人工作业的农作物播种比起来,其劳动强度也基本上是最大的。

1.1.3 用工集中

依据联合国统计,世界大蒜播种面积在1000万亩左右,其中中国是大蒜的主要产地,播种面积为600万亩左右。中国主要产区在山东金乡为中心,500公里范围内;大蒜播种时间主要集中在9月下旬到10月上旬;播种时由于劳动强度比较大,播种效率比较低,熟练大蒜播种人员一天仅能完成0.02hm2(0.3亩)的播种面积,一个大蒜播种季度需要几千万人天的工时。由于播种地域,时间,效率的限制,大蒜播种用工非常集中,大蒜主产区要获得播种劳力困难。

1.2 机械化播种需求迫切

中国成为大蒜的主产区,除中国部分地区大蒜个头大,质量好外,劳动力充足及成本低是一个主要因素。大蒜从播种,薄膜开口到收蒜薹、蒜苗、蒜果,每一株大蒜需要手工完成工序数5到7次,其中每一道工序,都是非常繁重的体力劳动。过去,由于中国劳动力充足,劳动力成本低,所以大蒜种植面积很大,出口量也很大。每年出口量达到200万吨以上,是中国主要的经济作物出口品种。

随着国内经济的发展,中国的劳动力正在变得不再充足,劳动力成本也正在变得越来越高,相关资料表明,从2008年到2015年,中国农业单体从业人员成本提高了3倍,新的农村体力劳动力基本上没有得到补充。这一现象逐渐使中国大蒜的生产成本快速增长。增长到一定程度,当劳动力成本到达某个临界值时,在未来十年内,大蒜将很难再在国内进行规模化生产。受到可耕种面积制约,国外不考虑农艺要求的机械化播种方式也难适应国内环境。国内一些过去的大蒜主产区,如陕西的兴平和武功,最近一些年大蒜播种面积已经大大减少,未来几年规模种植将可能会完全从该地区消失。

依据笔者山东,河南,湖北,陕西,四川等各地的调研结果,大蒜从种植到收获,单亩人工成本已经达到1200-2500元左右,而且这一成本在未来还将不断攀升;更可怕的是,在大蒜生产季节,有时候有些地区几乎找不到用工。

实现大蒜播种、收割、提薹机械化是解决这一问题关键,也是中国经济发展的必然。今天,中国粮食作物生产基本上已经完全实现了机械化,下一步在经济作物上实现机械化,是一种大势所趋。

2 国内外大蒜播种机械化情况

国外发达国家,如美国,法国,日本,西班牙等国家,在大蒜生产上基本上都实现了播种机械化。但这种机械化是受到限制的机械化,没有考虑农艺要求,无法保证鳞牙朝上。在这些国家不保证鳞牙朝上的种植是行得通的,这些国家要么可耕地面积相对宽裕,要么蒜农可以通过大蒜分级,用比较高的价格在其国内来销售这些产品,其经济效益基本上不太受到影响。

包括中国农科院在内的多家研究所,企业,农户,都在大蒜播种机械上有过尝试,开发十几种大蒜播种机产品,但受到各种技术和适应性限制,没有一种产品得到市场认可,也没有一种形成商品化广泛推广。

国外的大蒜播种机也在国内进行过市场行为,如西班牙的宝奇和法国的艾门及韩国的大蒜播种机企业等,都在国内进行试验销售,但基本上都是无果而终。新疆昭苏引进过艾门的大蒜播种机、山东莱芜引进过韩国的大蒜播种机,都没有获得农户的认可。

综合这些情况,国内基本上还没有成功的可商业化的大蒜播种机。目前以各种方式出现的大蒜播种机大致都存在着下列问题:

1 无法满足农艺要求,特别是无法满足中国特点的农艺要求。主要就是无法保证大蒜鳞

牙朝上并且直立。

2 效率限制。大蒜播种机除满足农艺要求外,还要求具有一定的效率。大蒜播种机机具复杂,成本比较高,农户采购播种自己的种植过程因为价格高而不合算;农机手购买后为大量农户服务又因为种植效率底下而不具有经济性。

3 播种机适应性差。大蒜播种机有很多适应条件,这些条件包括地域条件(影响行株距,间作等),土壤条件(土壤湿度,颗粒大小,土壤土质是粘土还是沙土),种子(种植尺度大且分布宽,选种),种植目的(苗蒜、果蒜、薹蒜或者混合目标),田亩条件(面积和形状)等。

3 商业化大蒜播种机实现技术

3.1 大蒜播种机技术要求

多项研究表明,适应国内大蒜种植方式,同时能进行商业推广的大蒜播种机,主要要解决下列技术问题:

1 为保证大蒜种植后鳞牙朝上,需要大蒜播种机解决以下三个关键技术问题

1 精密排种技术 2 大蒜鳞牙识别技术 3 直立播种技术 必须在每个技术环节,解决其效率问题,使大蒜播种机在其运行的各个阶段均具有2 生产效率问题 一致或者设计的效率。

3 适应性问题

必须在功能,性能上充分考虑中国大蒜播种的适应性,这些适应性包括地域条件,土壤条件,种植目标,种子状态,田亩条件等的限制。

3.2 现存大蒜播种机技术思路问题

国内外现存的大蒜播种机都存在技术思路问题,期望采用传统的农机技术,解决大蒜播种问题。在技术实现上几乎是不成立的。这些播种机也许能解决其中的一部分问题,但是实现商业化的大蒜播种机的技术问题是相互联系,因而只要有一个问题没有解决,这样的大蒜播种机就不具备市场价值。

所谓传统农机技术,就是通过一个连续的,系列化的方式和过程,对处理的目标无差异的处理。表现在大蒜播种机上,就是对每一瓣蒜瓣都通过相无差异的排种、鳞牙识别、倒向及植入。这一方法对于其他种子尺度小,分布有限,种植要求简单的播种,在实践上证明是行得通的,但对于大蒜播种这一直立度要求严格,种子形状复杂且尺寸大且差异大,分布广的种植,要想采用传统大蒜播种技术来实现,是很困难的,这点已经得到了客观的验证。采

用这种思想开发的大蒜播种机,要么无法保证播种质量(漏播和倒立数量大),效率低下,不具有实用价值;要么机构复杂、成本大、不稳定,也不具备市场推广的价值。

3.3 新型大蒜播种机的基本技术思路

【掰蒜种机】

现代技术的发展,为实现大蒜播种机商业化产品的提供了技术支撑。特别在播种机中运用视觉技术,工业自动控制思想,使开发具有市场价值的大蒜播种机成为可能。

1 智能思想

智能思想就是采用智能的方式,实现对大蒜的蒜种的鳞牙的方向的识别和大蒜蒜种尺度,缺陷的确定,以便后续依据这些识别的结果,决定对单粒蒜种采取的处理方式

这一思想是主要是通过视觉技术和软件技术来实现的

这一思想,可以准确确定大蒜的尺度和质量,对不符合尺度和表面质量的大蒜进行剔除,并依据大蒜鳞牙方向决定后续处理方式。

2 自动控制思想

传统的农机,在处理对象过程中是连续的,无差异化的。采用这一思想处理复杂的过程,设备必然非常复杂。自动控制思想,是将连续的过程分解成一个个独立过程,通过控制系统来保证这些过程的时序一致性。

这一思想将大大降低大蒜播种机的复杂程度,提高大蒜播种机的效率,功能完整性和机械的适应性。为商业化大蒜播种机设计提供理论支持。

实际上,实现这些思想的技术中的一部分,国内相关的高校,研究所(如青岛农业大学,南京农业机械化研究所,西北农林科技大学,山东五征集团,中国矿业大学,南京农业大学等等),基本上都进行过一些研究。进行了一些方向性的尝试。但这些单位无法在一台设备中全面解决这些技术问题。更重要的是,这些单位的尝试,在技术可实现方面欠缺比较大。所以这些单位尚未设计一个完整的,具有商业价值的大蒜播种机。至于那些注册专利和在大蒜播种机上有过实践的农户,其目标只是希望通过一些技术灵感来降低劳动强度而已,离可推广的,具有商业价值的产品,还离得太远,毕竟他们受到得限制也太大了。

3.4 新型大蒜播种机采用的技术

1 视觉技术:采用视觉技术,可以实现鳞牙朝向的识别和解决选种问题【掰蒜种机】

2 机器人智能技术:采用机器人技术,可以实现排种的精确化和播种的准确化

3 材料技术:在局部上,为保证设备性能,我们采用了一些自行研制的特殊材料。 4 自动控制技术:通过自动控制技术,保证了整个大蒜播种机的协调工作。

5 软件技术:软件技术是实现自动控制的一个重要部分

6 机械技术:所有的技术,最后都通过机械技术来实现。

7 气动技术:在某些局部行为上,采用气动技术,实现排种精确化。

这些技术应用在大蒜播种机上,不仅会使我们的大蒜播种机完全实现商业价值,同时在大蒜播种机上采用这些技术,不仅在国内是领先的,在从查询相关技术专利和发表文章来看,

在国际上也是领先的。

在我们的产品中,有8项实现的技术可以申请国内外专利,其中的2项,技术难度很高,属于完全创新技术。

4 开发产品主要技术指标和适应技术限制

4.1适应的技术限制范围

1 大蒜尺寸:适应所有的大蒜尺寸,能通过选种将不符合农艺要求和设备要求的尺寸的大蒜过滤

2 行距适应性:100-200mm,适应除苗蒜播种以外的所有大蒜播种

3 株距适应性:80-200mm,适应所有目标大蒜生产的大蒜播种

4 适应间作播种

5 土壤干燥,松软,颗粒度小且大颗粒泥土分布均匀

6 适应粘土和沙土

7 适应薹蒜和果蒜及薹果兼收型种植的播种

8 播种地块必须已完成耕地

9 播种地块限制,对那种利用小块地面自产自消耗的种植方式的地块,无法适应。 10 不伤害播种的大蒜蒜瓣(大蒜蒜瓣很容易受到伤害),采用自动化技术进行高速蒜瓣传递,很容易伤害大蒜,影响大蒜的后期出牙和生长。

4.2 主要技术指标

1 速度指标:86000瓣/小时,按亩20000颗计算,达到4.3亩/小时,在实际播种时可以超出这一速度

2 朝向及直立度,大蒜直立且直立锥角小于10度

3 单次播种行数包括4,8,12行

4 完成包括土地整理,开沟,播种,覆土,压实等播种过程

5 能完成自动选种过程,可由农户设置选择大蒜尺寸范围

6 种箱容积可一次完成播种3-5亩

7 动力:需要45马力以上动力

8 一人操作,不需要辅助人员

篇四 掰蒜种机
插穴式自动定向大蒜播种机的设计研究_韩秋燕

插穴式自动定向大蒜播种机的设计研究

12

韩秋燕,王小瑜,郝

11

杰,谢丽君,余

1

(1.烟台汽车工程职业学院,山东烟台摘

265500;2.山东省农业机械科学研究院,济南250100)

要:为了提高大蒜播种机在播种过程中蒜瓣的直立度及鳞芽向上的概率,保证株距均匀,设计了一种新型的

大蒜播种机。通过对关键部件的结构设计与参数分析,确定了主要部件结构。经过试验验证,此大蒜播种机的锥形螺旋导种管能够使大蒜落土后鳞芽向上的合格率达到96%,压穴锥能够使直立度达到98%,并能保证株距均匀。

关键词:大蒜播种机;插穴式;自动定向

+

中图分类号:S223.26

文献标识码:A文章编号:1003-188X(2016)07-0172-04

DOI:10.13427/j.cnki.njyi.2016.07.035

0引言

现阶段,效率低、大蒜播种作业主要是人工插播,

牵引杆的末端安装有把手,埋土板连接在播种盘上,整个机构的后面

劳动强度大。虽然有研究提出并设计了大蒜播种机,并申请了国家专利;但在使用过程中并不能同时实现蒜种鳞芽向上、蒜种落土后的直立和均匀的株距,且多数设计整机庞大、结构复杂,不能形成经济适用的产品进行大规模推广

[1-6]

。为此,在调研了大量的现

[7-13]

有大蒜播种机装置和专利后,设计了一种能够同

[14]

【掰蒜种机】

时自动确定鳞芽方向和实现均匀株距的插穴式蒜瓣自动定向大蒜播种机,成功申请了专利料。

,并进行播

种试验,旨在为大蒜播种机的产品化应用提供基础资

1.播种箱2.排种管3.下种管4.覆土板5.导种管6.挡板7.凸轮8.压穴锥9.播种盘10.中心轴11.牵引杆12.把手

图1Fig.1

插穴式蒜瓣自动定向大蒜播种机结构简图

garlicplantingmachine

Thestructuredrawingofautomaticorientationplug-hole

1

1.1

整体结构及工作原理

整体结构

该插穴式蒜瓣自动定向大蒜播种机由播种箱、排

1.2

工作原理【掰蒜种机】

以拖拉机作为动力,通过把手和牵引杆把动力传

种管、下种管、覆土板、导种管、挡板、凸轮、压穴锥、播种盘、中心轴、牵引杆及把手组成,整体结构如图1所示。

播种箱下端连接排种管,排种管下口正对着下种管的上口,二者之间有一挡板,下种管下面连接着导种管;挡板和凸轮组成直动顶尖从动件盘形凸轮机构,凸轮和播种盘同心并排固定在中心轴上,圆锥形的压穴锥均匀分布在播种盘的外圆上;牵引杆安装在

收稿日期:2015-07-15

基金项目:山东省农业重大应用技术创新项目(鲁财农指[2014]38

号);济南市科技发展计划项目(201401273)

(E-mail)作者简介:韩秋燕(1979-),女,山东梁山人,讲师,硕士,

hanqiuyan145666@163.com。

到播种盘上;播种盘转动,播种盘上的压穴锥压出圆锥形的种穴,同时凸轮转动,带动挡板向右移动,排种管和下种管连通,蒜种由播种箱落下,经过排种管,落到下种管中,然后经弯曲状的锥形螺旋导种管下落到圆锥形的种穴中;播种盘继续带动凸轮转动,挡板在凸轮推程过程中向左移动,阻断播种管和下种管的连接;同时覆土板对落下的蒜种进行覆土,此为一次播种过程;播种盘继续在动力带动下向前转动进行下一次播种,实现播种的连续作业,如此往复。

2

2.1

关键部件设计

蒜瓣外形尺寸的测量与分析

宽、从蒜种中随机选取了50个蒜瓣,分别对其长、

高、质量进行测量,得到外形尺寸统计(见表1)和尺寸频数(见图2~图5),从频数图可看出外形尺寸基本符合正态分布。

表1Table1长L/mm31.280.672.1433.0529.8

蒜瓣外形尺寸统计表Statisticsofgarlicsize

宽B/mm18.700.583.1020.0715.1

高H/mm21.060.210.9924.3218.7

质量M/g6.570.350.538.75.3

Fig.5

图5

蒜瓣质量频数图

变量

平均值标准差变异系数/%最大值最小值

Frequencychartoftheweightofthegarlicclove

蒜瓣形状鳞芽处尖,蒜根处粗,瓣背成弧形,其质心位于大头最厚处,有利于蒜瓣的稳定落下

[15-16]

根据大蒜播种农艺要求和蒜瓣外形尺寸的统计分析结果,对播种盘和压穴锥、盘形凸轮机构及导种管进行设计。2.2

播种盘和压穴锥播种盘结构如图6所示

图2

Fig.2

蒜瓣长度频数图

Frequencychartofthelengthofthegarlicclove

1.播种盘

图6Fig.6

图3

Fig.3

蒜瓣宽度频数图

Frequencychartofthewidthofthegarlicclove

2.压穴锥播种盘Seedtray

播种盘外圆上均匀分布着圆锥形的压穴锥,压穴锥之间的圆弧距离为大蒜的株距。播种盘每转过1个株距,压穴锥压出1个圆锥形的种穴,保证均匀的株距。结合实际的农艺要求和播种盘的协调性,播种盘每转1周播种8个蒜种,株距为150mm,则

D=

式中

nt

π

D—播种盘的直径(mm);n—1个周期内下落的蒜种数;t—株距或穴距(mm)。

图4

Fig.4

蒜瓣高度频数图

t=150mm带入上式得到D=382.2mm。将n=8,

根据大蒜的外形尺寸和农艺要求,压穴锥的大径

Frequencychartoftheheightofthegarlicclove

为25mm,小径为19mm,高度为35mm。这种压穴锥压出的种穴呈上大下小的圆锥形,能够保证大蒜顺利落入种穴,并保持直立。2.3

盘形凸轮机构

凸轮是一个盘形构件,如图7所示

图8Fig.8

1.中心轴

2.凸轮图7Fig.7

3.下种管【掰蒜种机】

4.挡板

导种管

Theguidetube

1次出口的内径尺寸为29mm,其锥角为5°~7°,

仅能下落1粒蒜种,且由于蒜种的只心在大头端,蒜种在导种管下落时可以在摩擦力的作用下自动调整蒜种方位,使大头端朝下、鳞芽向上

[16]

5.排种管6.压穴锥7.播种盘

盘形凸轮机构Platecammechanism

与凸轮组成直动顶尖从动件盘形挡板是从动件,

凸轮机构。此机构能够使凸轮带动挡板做有规律的直线往复运动,控制蒜种的落下。凸轮转动,带动挡板向右移动,排种管和下种管连通,蒜种落下;播种盘继续带动凸轮转动,挡板在凸轮推程过程中向左移动,阻断播种管和下种管的连接,如此往复。

凸轮和播种盘同心并排固定在中心轴上,播种盘转动时带动凸轮转动。当播种盘转过1个株距,压穴锥压出1个圆锥形的蒜种穴,凸轮便带动挡板向右移动1次;播种管和下种管连通,此时蒜种由播种管下落到下种管中,保证每压出1个蒜种穴便下落1粒蒜种。

根据整个机构的尺寸规划和挡板的运动规律,利用图解法对盘形凸轮机构进行设计,结果如表2所示。

表2

Table2挡板半径/mm

【掰蒜种机】

基圆半径/mm

盘形凸轮机构参数Parametersofdisccammechanism挡板最大升程/mm

凸轮推程角/(°)

远休止角/(°)

3试验分析

随机选取50个蒜瓣,利用上述大蒜播种机样机进

行田间试验,分析蒜种落土后鳞芽朝向、直立程度和株距情况,试验重复3次,结果如表3和表4所示。

表3Table3

鳞芽朝向试验效果Theupwarddegreedofgarlic

合格率/%969896

试验次数鳞芽朝上鳞芽朝下

123

484948

212

由表3可看出:大蒜落土后鳞芽向上的合格率达到了96%以上,此导种管的设计较好地解决了鳞芽朝向问题。

表4

鳞芽直立程度试验效果Theupwardprobabilityofgarlic

合格率/%10098100

Table4

设计内容

回程角近休止角/(°)

/(°)

试验次数

120

30

蒜瓣直立蒜瓣平躺

数据10554018030

123

504950

010

2.4导种管

导种管为弯曲的锥形螺旋状,如图8所示

J].农业装备与车辆工程,2013,51(4)5-8.的研究[

由表4可以看出:大蒜落土后直立度达到98%以上;在这3次试验中,仅有1颗大蒜落土后不是直立的,出现这一特例的原因与土壤的含水率、导种管下口与种穴的距离等有关。

在这3次试验中,株距比较均匀,达到了农艺要求。但是在试验过程中个别蒜种的下落位置和压穴锥压出的种穴位置存在误差,致使蒜种不能播种到种穴中,这个问题需要在后期的研究中进一步改进和完善。

[5]赵丽清,马志勇.大蒜播种机装盘系统蒜瓣定向识别算

J].农机化研究,2013,35(6):163-166.法的研究[

.农[6]谢学虎,刘召.大蒜播种机种植机构的设计[J]张永,

2015,31(1):34-39.业工程学报,

200720021688[P].2008-[7]马永海.大蒜播种机:中国,

04-09.

[8]倪军.大蒜播种机:中国,200820016731.5[P].2008-11

-05.

[9]王迪福.大蒜播种机:中国,20082002800.8[P].2008-

09-03.

[10]杨国立.大蒜播种机:中国,02214834.5[P].2003-04

-23.

[11]刘赞东,02148764.白玉成,王文堂.大蒜栽植机:中国,

2[P].2004-06-02.

[12]林悦香,尚书旗,杨然兵,等.大蒜生产机械的现状与发

J].农机化研究,2012,34(3):242-246.展[

[13]郭毅,于丽颖,等.大蒜播种机机械的研究现状张祖立,

[J].农机化研究,2009,31(6):221-223.

[14]韩秋燕,余娟,等.插穴式蒜瓣自动定向大蒜播种郝杰,

201320389636[P].2013-07-02.机:中国,

[15]王小瑜,崔荣江,荐世春.大蒜种体形态分析及植株收

J].农机化研究,2015,37(9):202-获性能试验研究[205,210.

[16]荐世春,刘云东.大蒜播种机蒜瓣自动定向控制装置的

J].农业装备与车辆工程,2009(10):28-试验研究[29.

4结论

该插穴式蒜瓣自动定向大蒜播种机很好地解决了

大蒜播种株距不均匀、鳞芽直立程度和蒜种鳞芽方向朝上的难题。试验结果表明:此大蒜播种机的锥形螺旋导种管能够使大蒜落土后鳞芽向上的合格率达到96%,压穴锥能够使直立度达到98%,盘形凸轮机构和播种盘能够保证比较均匀的株距,达到农艺要求。参考文献:

.农机化[1]王方艳.大蒜播种机主要部件的设计及分析[J]

2010,32(8):90-93.研究,

[2]高迟,李绅淑,等.大蒜鳞芽方向识别的实验研薛少平,

J].农机化研究,2010,32(10):136-139.究[

[3]林悦香,.杨然兵,等.大蒜直立播种机设计[J]尚书旗,

2013,35(10):87-89.农机化研究,

[4]李瑞川,曲殿伟,等.某大蒜播种机单粒排种装置孙雪,

DesignResearchofPlug-holeAutomaticOrientationGarlic

PlantingMachine

HanQiuyan1,WangXiaoyu2,HaoJie1,XieLijun1,YuJuan1

(1.YantaiAutomobileEngineeringVocationalCollege,Yantai265500,China;2.ShandongAgriculturalMachineryRe-searchInstitute,Jinan250100,China)

Abstract:Inordertoimprovetheuprightdegreedandtheupwardprobabilityofgarlicduringthesowingprocess,toen-suretheuniformityofplantspacing,anewkindofgarlicplantingmachinewasdesigned,themachinehasataperedspi-ralpipe,pressureholeconeandplatecammechanism,throughexperiment,theconicalspiralpipeofthegarlicseedercanimprovetheupwarddegreedreached96%,thepressureconecanimprovetheuprightprobabilityreached98%,thedisccammechanismcanensuretheuniformspacing,thenewgarlicplantingmachineisreliable,canimprovethesowingqualitysignificantly.

Keywords:garlicplantingmachine;plug-hole;automaticorientation

篇五 掰蒜种机
大蒜蒜种选型与机械化种植对蒜瓣的要求

大蒜蒜种选型与机械化种植对蒜瓣的要求

摘要 从外形特点及蒜瓣规格2个方面分析了大蒜蒜种的选型方法,并总结了机械化种植对蒜瓣的要求,以期为大蒜的机械化种植提供技术参考。

关键词 大蒜;蒜种选型;机械化种植;蒜瓣;要求

我国是世界上大蒜种植的第一大国,总产量占全世界的1/6以上,种植面积达70万hm2左右,但目前大蒜种植95%以上都是靠人工,随着我国农村劳动力减少,大蒜的机械化种植成了农机领域亟待解决的问题[1-2]。但大蒜的品种繁多,蒜瓣的大小和形状也有较大的差别,因此实现大蒜机械化种植的前提是对蒜种进行选型,否则要求大蒜种植机械来适应不同种类的蒜种其开发难度非常大,即使开发出来,其使用维护的成本也非常高[3]。各个产地的大蒜因为种植方法和土壤等环境因素的影响使得蒜瓣的大小和形状有较大的差异[4-5],笔者选择了苍山蒜、金乡蒜以及盐城蒜作为研究对象,来探讨适合机械化种植蒜种的条件。

1 蒜种选型

1.1 外形

苍山蒜、金乡蒜、盐城蒜的外形见图1。由图1可知,苍山蒜的特点为:头大瓣齐,皮薄如纸,蒜头近圆形,横径4.0~4.5 cm,每个蒜头有6~7瓣,蒜瓣围绕蒜杆排列整齐,蒜形规则。金乡蒜的特点是:蒜皮微白,头大瓣多,每个蒜头有蒜瓣6~8瓣,由蒜顶向下看,绕蒜杆分2层排列,内外层蒜瓣数、重量、形状差异很大,可用于种植的大瓣蒜主要集中于外层,整个大蒜为偏心圆分布,形状不规整。盐城蒜的特点是:蒜皮微白,蒜头大小不均,重量差异很大,整体尺寸小于上述2种大蒜,由于在种植时没有将鳞芽直立,生长过程中蒜杆弯曲,使得蒜形倾斜,基本成“逗号”状。通过3种大蒜外形的对比可知,苍山蒜蒜型规则,重量差异小,符合机械化种植的某些指征。

1.2 蒜瓣

大蒜按鳞茎中蒜瓣的大小可分为大瓣种、中瓣种和小瓣种,根据种植的要求一般都是选取大瓣种和中瓣种。笔者随机选取了100粒苍山蒜蒜瓣,随机分成10组,用游标卡尺对蒜瓣4个方向上的尺寸进行测量,得到的其中一组数据见表1。通过表1数据,笔者绘制了苍山蒜蒜瓣外形的正态分布图(图2)。

用同样的方法对金乡蒜和盐城蒜蒜瓣进行测量,因盐城蒜数据分布的规律性很差,数据分析意义不大,仅对金乡蒜蒜瓣数据分析得到其正态分布情况(图3)。

通过数据分析的正态分布可以看出,苍山蒜蒜瓣各方向上的尺寸变化范围不大,蒜瓣可建成“V”形面加1个类椭球曲面的空间模型,且蒜瓣的几何中心和物理重心重合都位于蒜瓣的下部(图4);而金乡蒜蒜瓣大小不均,几何形状不稳

篇六 掰蒜种机
大蒜播种机种植机构的设计

篇七 掰蒜种机
大蒜播种机详细设计 凸轮转移机构

蒜爪转移机构

设计文档

西安巨丰湛青科技有限公司

二零一五年五月

0 文档环境

1.1内容边界

本文说明在考虑本项目技术条件边界下,实现将运载蒜爪完成抓蒜,避让,移动,插蒜,

回归等功能相关的机构、动力提供、支撑提供、泥土清除等机构的方案设计、概要设计、实施方式、设计思想、边界耦合分析等内容,以及实现本部件的评估,价值,后续工作,测试方案等。是实现大蒜转移机构的主要依据。

1.2词语解析

蒜爪:指本设备运载的一种将大蒜抓住并随本设备一起运动,在指定地点放开的一种执行机构。

凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。 凸轮是一个具有曲线外轮廓或凹槽的构件,一般为主动件,作等速回转运动或而从动件做往复直线运动,提供一种限定了的带时间变化的直线运动机构。

蒜爪转移机构:在大蒜播种机上,运载蒜爪完成取蒜,避让,移动,插蒜,回归等一系列运动的机构,是本节设计的目标。

四连杆机构:一种运动机构,能够将独立的两个方向的运动合成到一个二维空间的运动,并且运动之间保持独立,同时对驱动运动有放大作用。

前后及上下:大蒜种植机运动的方向为前,否则为后,上下符合日常生活理解。

1.3目标读者

本部分的目标读者为机械设计中,设计者和管理者,在设计,制造,测试及使用服务中均可能需要使用本文档

1.4其他说明

本文中所有引用本部件指“蒜爪转移机构”

由于采用迭代设计,因而在设计中,可能部分地方出现前面引用后面的定义结果的情况。

1.5版次及相关信息

版本号;V1.1 设计者:何文华 封闭日期:2015-05-28

1 修订记录

目录

0 文档环境 .......................................................................... 2

1.1内容边界 ...................................................................................................................................................... 2 1.2词语解析 ...................................................................................................................................................... 2 1.3目标读者 ...................................................................................................................................................... 2 1.4其他说明 ...................................................................................................................................................... 2 1.5版次及相关信息 .......................................................................................................................................... 2

1 修订记录 .......................................................................... 3 2 定义条件 ......................................................................... 13

2.1实现的目标 ................................................................................................................................................ 13 2.1.1正确完成所有的位置和运动 ............................................................................................................. 13 2.1.2空间上不干涉 ..................................................................................................................................... 13 2.1.3整体性强 ............................................................................................................................................. 13 2.1.4保证适当的寿命 ................................................................................................................................. 13 2.1.5 环境适应性 ........................................................................................................................................ 13 2.1.6美观性要求 ......................................................................................................................................... 13 2.1.7 稳定性 ................................................................................................................................................ 14 2.1.8 易用性 ................................................................................................................................................ 14 2.1.9 低成本 ................................................................................................................................................ 14 2.2 外部依赖 ................................................................................................................................................... 14 2.2.1 农艺限制 ............................................................................................................................................ 14 2.2.2 土壤环境 ............................................................................................................................................ 14 2.2.3 整机 .................................................................................................................................................... 15 2.2.4 蒜盒 .................................................................................................................................................... 15 2.2.5 输送带 ................................................................................................................................................ 15 2.2.6 蒜爪 .................................................................................................................................................... 15 2.2.7 气候条件 ............................................................................................................................................ 15 2.2.8 设计余量 ............................................................................................................................................ 16 2.2.9 驱动 .................................................................................................................................................... 16 2.3 关键需要保证的技术点 ........................................................................................................................... 16 2.3.1 响应速度 ............................................................................................................................................ 16 2.3.2 稳定性和使用寿命 ............................................................................................................................ 16 2.3.3 抗冲击能力,泥土影响 .................................................................................................................... 16 2.4 引用相关标准 ........................................................................................................................................... 16

3 方案设计 ......................................................................... 18

3.1概述 ............................................................................................................................................................ 18 3.1.1 定义 .................................................................................................................................................... 18 3.1.2采用的主要结构方式 ......................................................................................................................... 18 3.1.3 设计考虑的因素 ................................................................................................................................ 19 3.2 关键设计 ................................................................................................................................................... 19 3.2.1 参数及说明 ........................................................................................................................................ 19

3.2.2 运动控制分析 .................................................................................................................................... 22

3.2.2.1 综合运动原理及解析 .................................................................................................................................. 22 3.2.2.2 垂直运动原理及解析 .................................................................................................................................. 23 3.2.2.3 株向运动原理及解析 .................................................................................................................................. 24

3.2.3 四连杆机构运动分析 ........................................................................................................................ 25 3.3 方案设计 ................................................................................................................................................... 26 3.3.1机构示意图 ......................................................................................................................................... 26 3.3.1功能需求 ............................................................................................................................................. 26 3.3.3 结构组成 ............................................................................................................................................ 27

3.3.3.1 垂直运动凸轮 .............................................................................................................................................. 27 3.3.3.2 水平运动凸轮 .............................................................................................................................................. 27 3.3.3.3 综合运动机构 .............................................................................................................................................. 27 3.3.3.4 固定机构 ...................................................................................................................................................... 28 3.3.3.5 盖体.............................................................................................................................................................. 28 3.3.3.6 动力传入机构 .............................................................................................................................................. 28 3.3.3.7 传感器及固定结构 ...................................................................................................................................... 28 3.3.3.8 清土机构 ...................................................................................................................................................... 29

3.3.4 行为分析 ............................................................................................................................................ 29

3.3.4.1 传递蒜爪的行为分析 .................................................................................................................................. 29 3.3.4.2 传感器行为分析 .......................................................................................................................................... 29 3.3.4.3 清土机构行为分析 ...................................................................................................................................... 29 3.3.4.4 动力传入机构行为分析 .............................................................................................................................. 30

3.3.5 适应性分析 ........................................................................................................................................ 30

3.1.5.1正确完成所有的位置和运动 ....................................................................................................................... 30 3.1.5.2 空间上的不干涉 .......................................................................................................................................... 30 3.1.5.3整体性强 ....................................................................................................................................................... 30 3.1.5.4保证适当的寿命 ........................................................................................................................................... 30 3.1.5.5 环境适应性 .................................................................................................................................................. 30 3.1.5.6美观性要求 ................................................................................................................................................... 31 3.1.5.7 稳定性 .......................................................................................................................................................... 31 3.1.5.8 易用性 .......................................................................................................................................................... 31 3.1.5.9 低成本 .......................................................................................................................................................... 31

4 部件设计 ......................................................................... 32

4.1 垂直运动凸轮 ........................................................................................................................................... 32 4.1.1 限制曲线: ........................................................................................................................................ 32

4.1.1.1 时间转换为角度 .......................................................................................................................................... 32 4.1.1.2 段运动曲线 .................................................................................................................................................. 32 4.1.1.3 控制曲线 ...................................................................................................................................................... 33 4.1.1.4 运动学分析-速度 ........................................................................................................................................ 33 4.1.1.5 运动学分析-加速度..................................................................................................................................... 33 4.1.1.6 光顺.............................................................................................................................................................. 33 4,.1.1.7 曲线绘制方式 ............................................................................................................................................. 33

4.1.2 凸轮及相关尺寸控制准则 ................................................................................................................ 34 4.1.3 重量控制 ............................................................................................................................................ 34

本文来源:http://www.guakaob.com/jieri/858035.html

    热门标签

    HOT