七年级数学上册整式教学视频

| 教案 |

【www.guakaob.com--教案】

七年级数学上册整式教学视频(一)
人教版七年级数学上册教案之整式

第一课时:整式(1)

教学目标和要求:

1.理解单项式及单项式系数、次数的概念.

2.会准确迅速地确定一个单项式的系数和次数.

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.

教学重点和难点:

重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数. 难点:单项式概念的建立.

教学过程:

一、复习引入:

1、列代数式

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)

2、请学生说出所列代数式的意义.

3、请学生观察所列代数式包含哪些运算,有何共同运算特征.

由小组讨论后,经小组推荐人员回答,教师适当点拨.

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,

如a,5.

2.练习:判断下列各代数式哪些是单项式?

(1); (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5.

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以

四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.

单项式的系数:单项式中的数字因数叫做这个单项式的系数.

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.

4.例题:

例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1; ②; ③πr2; ④-a2b

答:①不是,因为原代数式中出现了加法运算;【七年级数学上册整式教学视频】

②不是,因为原代数式是1与x的商;

③是,它的系数是π,次数是2;

④是,它的系数是-,次数是3.

例2:下面各题的判断是否正确?

①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab 3c2的次数是0+3+2;

④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥πr2h的系数是.

答:①错,应是−7;②错;−x2y3系数为−1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3 = 5;⑥正确

强调应注意以下几点:

①圆周率π是常数;

②当一个单项式的系数是1或-1时,“ 1”通常省略不写,如x2,-a2b等;

③单项式次数只与字母指数有关.

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)

三、课堂小结:

①单项式及单项式的系数、次数.

②根据教学过程反馈的信息对出现的问题有针对性地进行小结.

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.

教学后记:

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.

针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.

【七年级数学上册整式教学视频】

第二课时:整式(2)

教学目标和要求:

1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.

2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.

3.初步体会类比和逆向思维的数学思想.

教学重点和难点:

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.

难点:多项式的次数.

教学过程:

一、复习引入:

观察以上所得出的四个代数式与上节课所学单项式有何区别.

(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)

二、讲授新课:

1.多项式:

由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constant term).例如,多项式3x2−2x+5有三项,它们是3x2,-2x,5.其中5是常数项.

一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2−2x+5是一个二次三项式.

注意:

(1)多项式的次数不是所有项的次数之和;

(2)多项式的每一项都包括它前面的符号.

(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.)

2.例题:

例1:判断:

①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;

②多项式3n4-2n2+1的次数为4,常数项为1.

(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数.)

例2:指出下列多项式的项和次数:

(1)3x-1+3x2; (2)4x3+2x-2y2.

解:(1)三项,二次;(2)三项,三次.

例3:指出下列多项式是几次几项式.

(1)x3-x+1; (2)x3-2x2y2+3y2.

解:(1)三次三项式;(2)四次三次式.

例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件.

解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n = 3;而该多项式至少有两项3xn和1,当m−1≠0时,该多项式即为三项式,与已知不符,所以m = 1.

(让学生口答例2、例3,老师在黑板上规范书写格式.讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式(integral expression).例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.)

三、课堂小结:

①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.

②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统. (让学生小结,师生进行补充.)

教学后记:

从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点.掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性.最后列举几个例子,与学生一起完成.教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成.要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识.

七年级数学上册整式教学视频(二)
北师大版数学七年级上册 :1_整式教案1

七年级数学上册整式教学视频(三)
人教版七年级上册数学第二章整式教案

整式

知识点1:单项式、多项式、整式的概念及它们的联系和区别

单项式:由数与字母的乘积组成的式子叫做单项式,单独一个数或一个字母也是单项式。 1如:ab,m2,x3y,5,a。 2

多项式:几个单项式的和叫多项式。

如:x22xyy2、a2b2。

整式:单项式和多项式统称整式。

它们的关系可以用

图表示:

知识点2: 单项式的系数和次数【七年级数学上册整式教学视频】

单项式的系数是指单项式中的数字因数。单项式的次数是指单项式中所有字母的指数和。【七年级数学上册整式教学视频】

11如:a2b的系数是,次数是3。 33

注意:(1)圆周率π是常数,2πR系数是2π)

(2)当一个单项式的系数是1或-1,1通常省略不写,如:a2,m3。

(3)23a2中系数是23,次数是2。

知识点3 :多项式的项、常数项、次数

在多项式中,每个单项式叫做多项式的项。其中不含字母的项叫常数项。多项式中次数最高项的次数,就是这个多项式的次数。

如多项式3n42n2n1,它的项有3n4,2n2,n , 1 。其中1不含字母是常数项,3n4这一项次数为4,这个多项式就是四次四项式。

注意:(1)多项式的每一项都包括它前面的符号。

如:6x22x7包含的项是6x2,2x,7。

(2)多项式的次数不是所有项的次数之和。

知识点4: 同类项

同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。

例如:m2n与3m2n是同类项;x2y3与2y3x2是同类项。

注意:同类项与系数大小无关,与字母的排列顺序无关。

知识点5:合并同类项法则

合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变。

如:3m3n22m3n2(32)m3n2m3n2。

知识点6: 括号与添括号法则

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号。

如:(abc)abc, (abc)abc

【七年级数学上册整式教学视频】

知识点7: 升幂排列与降幂排列

为便于多项式的运算,可以用加法交换律将多项式各项的位置按某个字母的指数大小顺序重新排列。

若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列。

若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列。 1如:多项式2a3b3ab3a2bb2aa1 2

1按字母a升幂排列为:1ab2a3ab3a2b2a3b。 2

注意:(1)重新排列后还是多项式的形式,各项的位置发生变化,其他都不变。

(2)各项移动时要连同它前面的符号。

(3)某项前的符号是“+”,在第一项位置时,正号“+”可省略,其他位置不能省,排列时注意添加或省略。

知识点8:整式加减的一般步骤

(1)如果有括号,那么先去括号。有多重括号时,先小括号,再中括号,最后大括号。

(2)如果有同类项,再合并同类项。

典型例题:

1、指出下列各式哪些是单项式?哪些是多项式?

1x22,0,x2y,ab,x2y25 ,,,29xy1,m,xyz, x+x+1x322x

1

x22x,―2.01×105。

352、指出下列单项式的系数、次数:ab,―x2,3xy5,x

5yz3。

3、指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?

14、多项式x2y-x2y2+5x3-y3的最高次项系数是 。 2

15、多项式-3ab2+a3b+4-a2的项是2

高次项是 ,最高次项的系数是 ,常数项是 ,它是 次 项式。

6、若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项,并简化 131(1)1(s+t)-(s-t)-(s+t)+(s-t); 4635

(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。

⑶5(s+t)3-2(s-t)4-2(s+t)3+(t-s)4。

7、若5x3ym和9xn1y2是同类项,则m=_________,n=___________。

24n1ab的和是单项式,那么m=,n= 3

29、观察下列单项式:x,-3x,5x3,-7x4,9x5,„按此规律,可以得到第2008个单项

式是______.第n个单项式怎样表示________.

10、一个三位数,个位数字是a,十位数字是b,百位数字是个位的两倍,这个三

位数表示为 。 8、已知单项式3amb2与-

11、代数式9(2ab)2的最大值是______.

12、如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是

( )

A.5n B.5n-1 C.6n-1 D.2n2+1

13、已知a+2b=5,ab=-3,则(3ab-2b)+(4b-4ab+a)=___________.

14、当x2时,代数式px3qx1的值等于2002,那么当x2时,代数式px3qx1 的值为______.

15、已知xy2xy,求

16、 已知m2mn21,mnn215,求m2mnn的值。

17、 已知xy7,xy2,求5x3xy4y11xy7x2y的值。 222222224x5xy4y的值。 xxyy

18、已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件。

19、已知n是自然数,多项式yn+1+3x3-2x是三次三项式,那么n可以是哪些数?

20、多项式5xmy2+(m-2)xy+3x.(1)如果的次数为4次,则m为多少?(2)如果多项式只有二项,则m为多少?

21、如果5xmy2m2xy3x是四次三项式,求m。

22、如果多项式a1x41bx5x22是关于X的二次多项式,求ab。

23、已知A=2a2+3ma-2a-1,B=-a2+ma-1,且3A+6B的值不含有含a的项,求m的值。

24、一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当

1x=―1,y=时,这个多项式的值。 22

32n-122n-22n+1x-x-x+2按字母x降幂排列(n为自然数).并说34

出最高次项、常数项.

25、把多项式5x2n+

26、如图三角尺的面积为 ;

【七年级数学上册整式教学视频】

七年级数学上册整式教学视频(四)
七年级数学上册 2.1.1《整式(单项式)》教案 (新版)新人教版

1

2

七年级数学上册整式教学视频(五)
七年级数学上册 整式的加减法教案

7.1整式的加减法

教学目标: 知识与技能:

1.知道整式加减的意义;

2.会用去括号、合并同类项进行整式加减运算; 3.能用整式加减解决一些简单的实际问题。

过程与方法:经历从具体情境中用代数式表示数量关系的过程.体会整式加减的必要性,进一步发展符号感 情感态度与价值观: 1.进一步发展符号感;

2.培养学生认真细致的作风和解决问题的能力。 教学重点;整式加减的运算步骤。 教学难点:应用整式加减解决实际问题。

教材分析:本节是本章的重点内容。也是以后学习整式乘除、分式运算、一次方程和函数等知识的基础,同时也为其他学科的学习奠定基础。故在学习过程中重视对学生基础知识和基本技能的训练,关注 学生对知识发生发展过程的体验和应用能力的培养。 教学方法:情境教学法

教 具:电脑、投影仪、课件资源、投影片 课时安排:1课时 教学过程:

板书设计:

教学反思: 本节从实际情境导入,让学生体会整式加减的必要性,让学生在具体问题中感知去括号,合并同类项的过程就是整式的加减运算。课堂以学生活动为主,教师适时提出问题引导和点拨,收到效果较好,但在教学中还应注重提高学生能力的培养,给学生以充足的时间考虑问题较好。

本文来源:http://www.guakaob.com/shiyongwendang/645865.html