【www.guakaob.com--教案】
有理数的乘法练习题
一、判断:
(1)同号两数相乘,符号不变。 ( ) (2)两数相乘,积一定大于每一个乘数。 ( ) (3)两个有理数的积,一定等于它们绝对值之积。 ( ) (4)两个数的积为0,这两个数全为0。 ( ) (5)互为相反数的两数相乘,积为负数。 ( ) 二、选择题
1.五个数相乘,积为负数,则其中正因数的个数为( ) A.0 B.2 C.4 D.0,2或4 2.x和5x的大小关系是( )
A.x<5x B.x>5x C.x=5x D.以上三个结论均有可能3.如果x2y250,那么(-x)·y=( ) A.100 B.-100 C.50 D.-50
4.两个有理数的积是负数,和是正数,那么这两个有理数是( ) A.都是正有理数 B.都是负有理数
C.绝对值大的那个有理数是正数,另一个有理数是负数 D.绝对值大的那个有理数是负数,另一个有理数是正数
5.a、b互为相反数且都不为0,则(a+b一1)×
ab1
的值为( ) A.0 B.-1 C.1 D.2 6.-
27的倒数与绝对值等于2
21
的数的积为( ) A.
13 B.-13 C.±143 D.±147
7.已知a·b·c>0,ac<0,a>c,则下列结论正确的是( )
A.a<0,b<0,c>0 B.a>0,b>0,c<0
C.a>0,b<0,c<0 D.a<0,b>0,c>0 图1-30 8.如图1-30,a、b、c是数轴上的点,则下列结论错误的是( ) A.ac+b<0 B.a+b+c<0 C.abc<0 D.ab+c>0 9.如果三个数的积为正数,和也为正数,那么这三个数不可能是( ) A.三个都为正数 B.三个数都是负数 C.一个是正数,两个是负数 D.不能确定 三、填空
1.(+6)×(-1)= ;(-6)×(-5)×0= 。
2. ×(-3)=-21;-7
113× =0; 1
3
× =3。 3.绝对值大于3.7且不大于6的所有整数的积为 。 4.已知a+b>0,a-b<0,ab<0,则a 0;b 0;
;
5.11112345
的积的符号是 ;决定这个符号的根据是 ;积的结果为 。
6.如果a、b、c、d是四个不相等的整数,且a×b×c×d=49,那么a+b+c+d= 。 7.(-17)×43+(-17)×20-(-17)×163=(-17)×( 十 + ) =(-17)× = 。
8.某地气象统计资料表明,高度每增加1000米,气温就降低大约6℃,现在地面气温是37℃.则
10000米高空气温约为 .
四、计算(1)(8.2)(1) (2)(2.25)(80) (3)31227
(2.5)21117
(4)
30(1.5)2(308)
(5)7 (6)28
五、用简便方法计算
(2)(7)(5)(1311
(1)7)(1000)(0.1)
(2)1025
(3.59)(44413
(3)7)2.41(7)6(7)19(11)
(4)14
(5)8110.43 (6) (382)(2)(382)(6)(382)(2)
3
4
六、简答题【有理数的乘法】
1.若a、b为有理数,请根据下列条件解答问题: (1)若ab>0,a+b>0,则a、b的符号怎样?
(2)若ab>0,a+b<0,则a、b的符号怎样?
(3)ab<0,a+b>0,ab,则a、b的符号怎样?
2.若a1,ab0,求-ab-2的值。
3.若a5,b的绝对值等于-1
2
的倒数的相反数,求ab的值.
4.煤矿井下A点的海拔高度为-174.8m,已知从A到B的水平距离为120m,每经过水平距离l0m
上升0.4m,已知B点在A点的上方.(1)求B的海拔高度;(2)若C点海拔高度为-68.8m,每垂直升高l0m用30s,求从A到C所用的时间。
5.商场对顾客实行优惠,若一次购物不超过200元,则不予折扣;若一次购物超过200元,但不超过500元,按标准价给予九折优惠;若一次购物超出500元,其中500元按上述九折优惠外,超过500元的部分按八折优惠.某人两次购物分别付款168元和423元,如果合起来一次购买同样多的商品,他可节约多少钱?
有理数的乘法 教学设计(一)
教学目的:
1.知识与技能
体会有理数乘法的实际意义;
掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。
2.过程与方法
经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中、小学数学中的乘法运算的重要区别。 通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。
3.情感、态度与价值观
通过类比和分类的思想归纳乘法法则,发展举一反三的能力。
教学重点:
应用法则正确地进行有理数乘法运算。
教学难点:
两负数相乘,积的符号为正。
教具准备:
多媒体。
教学过程:
一、引入
前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算.【有理数的乘法】
问题一:有理数包括哪些数?
回答:有理数包括正整数、正分数、负整数、负分数和零.
问题二:小学已经学过的乘法运算,属于有理数中哪些数的运算?
回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算.
计算下列各题;
以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.
二、新课
我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。
如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。
1.正数与正数相乘
问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为
(+2)×(+3)=+6
答:结果向东运动了6米.
2.负数与正数相乘
问题二:如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为
(-2)×(+3)=(-6)
3.正数与负数相乘
问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
讲解:3分后蜗牛应为l上点O左边6cm处,这可以表示为
(+2)×(-3)=-6
4.负数与负数相乘
问题四:如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
讲解: 3分前蜗牛应为l上点O右边6cm处,这可以表示为
(-2)×(-3)=+6
5.零与任何数相乘或任何数与零相乘
问题五:原地不动或运动了零次,结果是什么?
答:结果都是仍在原处,即结果都是零,若用式子表达:
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
综合上述五个问题得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6.
(5)任何数与零相乘都得零.
观察上述(1)~(4)回答:
1.积的符号与因数的符号有什么关系?
2.积的绝对值与因数的绝对值有什么关系?
答:1.若两个因数的符号相同,则积的符号为正;若两个因数的符号相反,则积的符号为负.2.积的绝对值等于两个因数的绝对值的积.
由此我们可以得到:
两数相乘,同号得正,异号得负,并把绝对值相乘.
(1)~(5)包括了两个有理数相乘的所有情况,综合上述各种情况,得到有理数乘法的法则:
口答:确定下列两数积的符号:
例题:计算下列各题:
解题步骤:
1.认清题目类型.
2.根据法则确定积的符号.
3.绝对值相乘.
练习:
1.口答下列各题:
(1)6×(-9); (2)(-6)×(-9);
(3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6)6×(-1);
(7)(-6)×0; (8)0×(-6);
(9)(-6)×0.25; (10)(-0.5)×(-8);
注意:由(4)(5)(6)得:一个数与1相乘得原数,一个数与-1相乘,得原数的相反数.
2.在表中的各个小方格里,填写所在的横行的第一个数与所在直列的第一个数的积:
3.计算下列各题:
(1)(-36)×(-15); (2)-48×1.25;
4.填空:
(1)1×(-5)=____; (-1)×(-5)=____;
+(-5)=____; -(-5)=____;
(2)1×a=____; (-1)×a=____;
(3)1×|-5|=____; -1×|-5|=____;
-|-5|=____
(4)1+(-5)=____; (-1)+(-5)=____;
(-1)+5=____.
三、小结
(1)指导学生看书,精读乘法法则.
(2)强调运用法则进行有理数乘法的步骤.
(3)比较有理数乘法的符号法则与有理数加法的符号法则的区别,以达到进一步巩固有理数乘法法则的目的.
四、作业
1.计算:
(1)(-16)×15; (2)(-9)×(-14);
(3)(-36)×(-1); (4)13×(-11);
(5)(-25)×16; (6)(-10)×(-16).【有理数的乘法】
2.计算:
(1)2.9×(-0.4); (2)-30.5×0.2;
(3)0.72×(-1.25); (4)100×(-0.001);
(5)-4.8×(-1.25); (6)-4.5×(-0.32).
3.计算:
4.填空:(用“>”或“<”号连接)
(1)如果a<0,b>0,那么,ab____0;
(2)如果a<0,b<0,那么,ab____0;
1.4.1 有理数的乘法
教学任务分析
教学流程安排
教学过程设计
一、创设情景,引入本节课要研究的问题――有理数的乘法
前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:
1.等于多少?表示什么?答案是:,表示3个2相加, 即:.
2.请将写成乘法算式?
它怎么计算呢?这就是我们今天要研究的有理数的乘法.
二、探索新知,归纳法则
以下各个问题由学生自主进行探索研究,发现有理数乘法的合理性,进而归纳出有理数的乘法法则,注意其中的关键――对含有负因数的两个有理数相乘的含义的理解要让学生进行解释.
在数轴上,向东运动2米,记作2米,向西运动2米应记作什么?(-2米)看下面的例子:
(1)
其中2看作向东运动2米,看作沿此方向运动3次.用数轴表示如下:
结果怎样呢?(向东运动了6米),所以有:.
(2)
其中-2看作向西运动2米,看作沿此方向运动3次.用数轴表示如下:
结果怎样?(向西运动了6米),所以有:.
(3)
其中2看作向东运动2米,
向西运动了6米.所以有:看作沿与此相反的方向运动3次,即向西运动了3次,共.
(4) 请同学们说出对此式的理解,并说出结论.
其中-2看作向西运动2米,×(-3)看作沿与此方向相反的方向运动了3次,即向东运动了3次,共向东运动了6米.
(5),,,
请同学们说说对这四个式子的理解,并得出结论.(都等于0)
从上面一组题中,同学们觉得两个有理数得相乘的结果有没有规律可循?建议大家从两个方面进行思考:①积的符号与两个因数的符号有什么关系?
②积的绝对值与两个因数的绝对值又有什么样的关系?
(学生活动时间2分钟)
学生回答,老师完善,得出有理数乘法的法则:
有理数乘法法则
同号两数相乘得正,异号两数相乘得负,并把绝对值相乘;
0与任何有理数相乘仍得0.
三、应用法则、巩固法则
我们已经探索出了有理数的乘法法则,下面我们来应用其解决一些问题
1.尝试训练,巩固练习(出示投影)
(1)确定下列两个有理数积的符号: ① ② ③ ④
(学生口答,解释原因)
(2)计算: ① ② ③ ④ ⑤ ⑥ ⑦ ⑧
(学生自主完成,查漏补缺)
2.例题1 计算:① ②
(由学生口述,教师板书,共同归纳出有理数乘法得解题步骤:
(1)确定积的符号;(2)计算积的绝对值)
巩固练习(出示投影) ① ② ③ ④
3.例题2 计算:① ② ③
教师活动设计:通过这几个题是想让同学们体会在绝对值的计算过程中怎样处理假分数.
4.从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题.
确定下列积的符号,你能从中发现什么? ① ② ③ ④
学生归纳结论:
结论1:有一个因数为0,则积为0;
结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.
巩固练习:判断下列积的符号(口答) ① ② ③ ④
四、主体活动,探索乘法运算律
探索1:任意选择两个有理数(至少有一个是负数)填入下式的□和○中,并比较结果:□×○ ○×□.
归纳(乘法交换律):两个有理数相乘,交换因数的位置,积不变,
即:ab=ba.
上一篇:人教版四年级上册语文电子书
下一篇:北师大版小学一年级上册同步训练